我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

雙積和預可加範疇

快捷方式: 差异相似杰卡德相似系数参考

雙積和預可加範疇之间的区别

雙積 vs. 預可加範疇

在範疇論中,雙積是直積在預加法範疇中的推廣,它同時是範疇論意義下的積與上積。. 在範疇論中,一個預可加範疇是使得任兩個對象間的態射集\mathrm(A,B)帶有交換群結構,並使得態射合成為雙線性運算之範疇。 形式地說,預可加範疇是在交換群的么半範疇上濃化的範疇。預加法範疇有時亦稱Ab-範疇,其中的Ab是交換群範疇的縮寫。舊文獻有時也將預加法範疇稱為加法範疇;在此則採當代觀點,區別預加法範疇與可加範疇。 一般而言,固定一個交換環k,我們可以定義k-預可加範疇為在k-模的么半範疇上濃化的範疇,即:使任兩個對象間的態射集\mathrm(A,B)為k-模,並使態射合成為k上的雙線性運算之範疇。取k.

之间雙積和預可加範疇相似

雙積和預可加範疇有(在联盟百科)5共同点: 向量空间积 (范畴论)范畴论除环

域(field)可以指:.

域和雙積 · 域和預可加範疇 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

向量空间和雙積 · 向量空间和預可加範疇 · 查看更多 »

积 (范畴论)

范畴论中,积(或直积)的概念提取了集合的笛卡儿积、群的积、环的积、拓扑空间的积等概念的共性。本质上讲,一组对象的积是到这些对象都有态射的对象中最具代表性的。.

积 (范畴论)和雙積 · 积 (范畴论)和預可加範疇 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

范畴论和雙積 · 范畴论和預可加範疇 · 查看更多 »

除环

环(division ring),又譯反對稱體(skew field),是一类特殊的环,在环内除法运算有效。需要特别注意的是,此环内必有非0元素,且环内所有的非0量都有对应的倒数(比如说,对于x来说,存在数a,使得 a·x.

除环和雙積 · 除环和預可加範疇 · 查看更多 »

上面的列表回答下列问题

雙積和預可加範疇之间的比较

雙積有6个关系,而預可加範疇有19个。由于它们的共同之处5,杰卡德指数为20.00% = 5 / (6 + 19)。

参考

本文介绍雙積和預可加範疇之间的关系。要访问该信息提取每篇文章,请访问: