之间锎和锔相似
锎和锔有(在联盟百科)44共同点: 加利福尼亞大學,原子序数,半衰期,中子,中子俘获,中子截面,帕斯卡,人工合成元素,化學元素發現年表,六方晶系,元素周期表,皮埃尔·居里,玛丽·居里,红血球,草酸盐,面心立方,順磁性,質子,超铀元素,鈾,阿伯特·吉奥索,钚,钆,铁磁性,锫,锿,锕系元素,臨界質量,自發裂變,镧系元素,...,镅,核反应堆,核裂变,核试验,格倫·西奧多·西博格,正交晶系,氡,氢,氮,施普林格科学+商业媒体,放射性,放射性同位素,放射性落下灰,晶体结构。 扩展索引 (14 更多) »
加利福尼亞大學
加利福尼亞大學(University of California),简称加州大学(UC),是美國加州的一个公立大學系统。它是组成加州公立高等教育体系的三个大学系统之一。另两部分分别是加利福尼亞州立大學系統和。相对其他两个系统,加大更注重高等研究領域,屬性上屬研究型大學。 加州大學系統總共有十個校區。加州大學也簽約管理三個美國能源部的國家實驗室。它拥有的诺贝尔奖得主不少于120位。美国国家科学院院士357位,佔美国国家科学院总院士2039位的近1/5;拥有全职学生23.8多万人,有6所加州大学为美國大學協會成员。.
原子序数
原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.
半衰期
半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.
中子
| magnetic_moment.
中子俘获
中子俘获是一种原子核与一个或者多个中子撞击,形成重核的核反应。由于中子不带电荷,它们能够比带一个正电荷的质子更加容易地进入原子核。 在宇宙形成过程中,中子俘获在一些质量数较大元素的核合成过程中起到了重要的作用。中子俘获在恒星里以快(R-过程)、慢(S-过程)两种形式发生。质量数大于56的核素不能够通过热核反应(即核聚变)产生,但是可以通过中子俘获产生。.
中子截面
中子截面(Neutron cross-section)常用於核物理學與粒子物理學中,表示入射中子與靶核交互作用的一種帶有機率意義的常數。單位以barn表示,等於10−24cm2。中子截面與中子通量、核反應速率計算有關,例如:計算一座核電廠的功率。.
帕斯卡
帕斯卡(符號Pa或Pascal)是國際單位制(SI)的壓強單位。在不致混淆的情況下也可簡稱為「帕」。它等於每平方米一牛頓。以法國學者(同時身兼數學家、物理學家、化學家、音樂家、宗教家、教育家、氣象學家、哲學家)布莱茲·帕斯卡之名而命名。百帕(hPa)和千帕(kPa)也是自Pa衍生出來的氣象常用單位,正常海平面約101kPa、或1013百帕。.
人工合成元素
人工合成元素,在化学中是指自然界中不存在,只有通过人工方法才能製造出來的化学元素。一般透過將兩種元素以高速撞擊,增大自然存在的元素原子核质子的个数,达到增大原子序数,制造出新的元素。 至今已有20多种人工合成元素被合成出来,它们均是不稳定元素,半衰期从几年到仅仅只有数毫秒。另外,还有十几种元素最初是通过人工合成的方式发现,但是后来在自然界中,也发现有痕迹量的存在。.
化學元素發現年表
化学元素發现年表将各种化学元素的发现按时间顺序列出。其中--发现的时间以提炼出元素单质的时间为准,因为元素化合物的发现时间无法准确定义。表中列出了每种元素的名称、原子序数、发现时间、发现者姓名和发现方式的简介。.
化學元素發現年表和锎 · 化學元素發現年表和锔 ·
六方晶系
六方晶系(hexagonal crystal system),有一个6次对称轴或者6次倒转轴,该轴是晶体的直立结晶轴C轴。另外三个水平结晶轴正端互成120°夹角。轴角α.
元素周期表
化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.
皮埃尔·居里
埃爾·居里(Pierre Curie,),法國物理学家、化学家,曾經由於發現放射性元素鐳而獲得諾貝爾物理學獎。.
玛丽·居里
玛丽亚·斯克沃多夫斯卡-居里(Maria Skłodowska-Curie,),通常稱為玛丽·居里(Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化学家。她是放射性研究的先驱者,是首位获得诺贝尔奖的女性,获得两次诺贝尔奖(獲得物理学奖及化学奖)的第一人(另一位為鲍林,獲得化學奖及和平奖)及唯一的女性,是唯一獲得二種不同科學類诺贝尔奖的人。她是巴黎大学第一位女教授。1995年,她与丈夫皮埃尔·居里一起移葬先贤祠,成为第一位凭自身成就入葬先贤祠的女性。 玛丽·居里原名玛丽亚·斯克沃多夫斯卡(Maria Salomea Skłodowska),生于当时俄罗斯帝国统治下的波兰会议王国的华沙,即现在波兰的首都。她在华沙地下读书,并开始接受真正的科学训练。她在华沙生活至24岁,1891年追随姊姊布洛尼斯拉娃至巴黎读书。她在巴黎取得学位并在毕业后留在巴黎从事科学研究。1903年她和丈夫皮埃尔·居里及亨利·贝可勒尔共同獲得了诺贝尔物理学奖,1911年又因放射化学方面的成就获得诺贝尔化学奖。 玛丽·居里的成就包括开创了放射性理论,放射性的英文Radioactivity是她造的词,她发明了分离放射性同位素的技术,以及发现两种新元素釙(Po)和镭(Ra)。在她的指导下,人们第一次将放射性同位素用于治疗肿瘤。她在巴黎和华沙各创办了一座居里研究所,这两个研究所至今仍是重要的医学研究中心。在第一次世界大战期间,她创办了第一批战地放射中心。 雖然玛丽·居里是法國公民,人身在異國,但也从未忘记她的祖国波兰。她教女兒波蘭文,多次帶她們去波蘭。她以祖国波兰的名字命名她所发现的第一种元素釙。 第一次世界大战時期,瑪麗·居里利用她本人发明的流動式X光機協助外科醫生。1934年病逝於法國上薩瓦省療養院,享年66岁。.
红血球
红血--球(Red blood cells (RBCs)),又称为红--细胞或血红--细胞,是血液中数量最多的一种血球,同时也是脊椎动物体内通过血液将氧气从肺或鰓运送到身体各个組织的最主要的媒介。破裂中的红血球或其碎片则称为裂红--细胞(schistocyte)。.
草酸盐
草酸盐是草酸形成的盐类,含有草酸根离子(C2O42−或(COO)22−)。由于草酸是二元酸,因此草酸盐分为正盐草酸盐与酸式盐草酸氢盐两类,后者含有HC2O4−。 草酸根离子(见右图)可作配体,与很多金属离子形成配合物,尤其是螯合物。该离子中,含有一个平面的八电子π体系,电子稳定性特别突出。它属于还原性阴离子,可被氧化剂,如高锰酸钾氧化为二氧化碳。 草酸盐有毒,人吞食可能發生草酸盐中毒,导致肾脏疾病甚至死亡。草酸根离子可沉淀钙离子,生成不溶于水的草酸钙。.
面心立方
#重定向 立方晶系.
順磁性
順磁性(Paramagnetism)指的是一種材料的磁性狀態。有些材料可以受到外部磁场的影响,产生跟外部磁場同樣方向的磁化向量的特性。这样的物质具有正的磁化率。与順磁性相反的现象被称为抗磁性。.
質子
|magnetic_moment.
超铀元素
超铀元素在化学上指的是原子序数在92(铀)以上的重元素。原子序数从1到92的元素中,除了锝,钷,砹,钫4种物质以外,都可以很容易在地球上大量检测到,而且比较稳定,有很长的半衰期,或者是铀的普遍衰变物。 序数92以上的元素都是首先以人工合成的办法发现的。僅有少數的元素在地球上被發現自然生成,例如钚、镎、鉲等,因为他们都有放射性,半衰期短。可以在富铀的矿石中检测到钚的痕迹,在核试验后也有少量生成。它们是铀矿石经过中子俘获紧接着两次β衰变而成的:(238U → 239U → 239Np → 239Pu)。 这些元素现在可以用核反应堆或者粒子加速器人工合成。这些元素的半衰期有随着序数的增加而有缩短的趋势,然而也有例外:例如𨧀和锔的一些同位素。格伦·西奥多·西博格预言了在这一系列元素中更多的反常元素,并且把它们归类于“稳定岛”,即质子或中子为幻数的原子核具有特别的稳定性。 超铀元素中未发现的元素以及发现但未命名的元素,使用IUPAC元素系统命名法。超铀元素的命名曾引起很大的争论,104到109号元素命名的争论从二十世纪六十年代开始,一直到1997年才解决。.
鈾
鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.
阿伯特·吉奥索
阿伯特·吉奥索(Albert Ghiorso,),生于美國加州瓦列霍,是一位物理学家,他参与了多个元素周期表中的化学元素的发现。.
钚
鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.
钆
釓(,舊譯錷)符号Gd,元素之一,原子序64,属于镧系元素,也是稀土元素之一。钆具有铁磁性,居里點約在室溫(19℃,66℉),即將一塊釓放入冰水中冷卻會吸附磁鐵,但回溫後釓會脫離磁鐵掉落。 钆在干燥的空气中,比其它稀土元素稳定。钆会与水有缓和的反应,并会溶於稀酸中。.
铁磁性
鐵磁性(Ferromagnetism)指的是一種材料的磁性狀態,具有自發性的磁化現象。各材料中以鐵最廣為人知,故名之。 某些材料在外部磁場的作用下得而磁化後,即使外部磁場消失,依然能保持其磁化的狀態而具有磁性,即所謂自發性的磁化現象。 所有的永久磁鐵均具有铁磁性或亞铁磁性。 基本上铁磁性这个概念包括任何在没有外部磁场时显示磁性的物质。至今依然有人这样使用这个概念。但是通过对不同显示磁性物质及其磁性的更深刻认识,学者们对这个概念做了更精确的定义。 一個物質的晶胞中所有的磁性離子均指向它的磁性方向時才被稱為是鐵磁性的。 若其不同磁性離子所指的方向相反,其效果能够相互抵消則被稱為反鐵磁性。 若不同磁性離子所指的方向相反,但是有强弱之分,其产生的效果不能全部抵消,則稱為亚铁磁性。 物質的磁性現象存在一個臨界溫度,在此溫度之上,铁磁性会消失而变成顺磁性,在此温度之下铁磁性才会保持。 對於鐵磁性和亞鐵磁性物质,此温度被稱為居里溫度(虽然都称为居里温度,但二者是有差别的);對於反鐵磁性物质,此温度被稱為奈爾溫度。 有人认为磁铁与铁磁性物质之间的吸引作用是人类最早对磁性的认识。Richard M. Bozorth,《Ferromagnetism》,1951年首版,1993年IEEE Press,New York作为“经典再版”再次发行,ISBN 0-7803-1032-2.
锫
锫(--;Berkelium)是一種放射性化學元素,符號為Bk,原子序為97,屬於錒系元素和超鈾元素。位於美國加州伯克利的勞倫斯伯克利國家實驗室在1949年12月發現錇元素,因此錇以伯克利(Berkeley)命名。錇是繼鎿、鈈、鋦和鎇後第五個被發現的超鈾元素。 最常見的錇同位素是錇-249,主要經高通量核反應爐產生。目前製造該同位素的有美國田納西州的橡樹嶺國家實驗室和俄羅斯季米特洛夫格勒的核反應器研究所。第二重要的同位素錇-247要用高能量α粒子向鋦-244進行撞擊而產生。 從1967年至今,在美國生產的錇元素僅僅超過1克。除在科學研究中用來合成更重的超鈾元素和超錒系元素外,錇沒有實際的用途。2009年,在進行250天的輻射後,橡樹嶺國家實驗室製成了22毫克的錇-249,並在其後的90天內對該樣本進行了純化處理。純化後的錇元素同年被送到俄羅斯聯合核研究所,以鈣-48離子向其撞擊150天後,合成了Ts(117號元素)。 錇是一種柔軟的銀白色放射性金屬。錇-249同位素輻射的是低能電子,所以相對安全。不過,其半衰期為330天,衰變後會產生鉲-249,而該同位素會釋放高能量的α粒子,十分危險。這種衰變的現象在研究錇元素及其化合物屬性時尤其重要,因為不斷生成的鉲不但會污染化學樣本,還會釋放輻射,破壞樣本的結構。.
锿
锿(Einsteinium,--,舊譯作釾)是一種人工合成元素,符號為Es,原子序為99。鑀是第7個超鈾元素,屬於錒系元素。 鑀是在1952年第一次氫彈爆炸的殘餘物中發現的,並以物理學家阿爾伯特·愛因斯坦命名。其最常見的同位素為鑀-253(半衰期為20.47天),是通過鉲-253的衰變而人工製造的,每年在高能核反應爐中的產量約為1毫克。合成之後,鑀-253要從其他錒系元素及其衰變產物中分離出來,這是個複雜的過程。其他的鑀同位素則在各個實驗室中以較輕元素的離子撞擊錒系元素而合成,但產量少得多。鑀除了用于合成新的元素,主要用于发射X射线。鑀曾在1955年用於首次合成鍆元素,並一共合成了17顆鍆原子。 鑀是一種柔軟的銀白色金屬,具順磁性。其化學屬性符合典型的重錒系元素,容易形成+3氧化態,並特別在固體中也可以形成+2態。鑀-253的高放射性會使它明顯地發光,並會迅速破壞其晶體金屬結構,每克釋放大約1000瓦的熱量。由於鑀-253每天都損失3%的質量,並依次衰變為錇和鉲,因此對鑀的研究十分困難。鑀-252是存留時間最長的鑀同位素(半衰期為471.7天),可以用於研究鑀的物理特性,但生產鑀-252是極為困難的,每次的產量也極少。鑀是最後一種曾在宏觀尺度下以純元素形態被研究過的元素,所用的同位素是常見但半衰期短的鑀-253。和其他的人工合成超鈾元素一樣,鑀是極具放射性的,如果進食了會對健康造成損害。.
锕系元素
锕系元素以第Ⅲ族副族元素锕为首的一系列元素,是原子序数第89元素锕到第103元素铹,共15种放射性元素,在周期表中占有一个特殊位置。 锕系元素的名稱是因為3族元素锕,有時也會符號An表示锕系元素。锕系元素絕大部份是f區元素,最高能量的電子是在5f電子層,锕系元素只有鐒是d區元素。鑭系元素中大部份也一様是f區元素,不過相較起來,锕系元素的化合價有較多的變化。 锕系元素原子基態的電子構型是5f0~146d0~17s2,这些元素的核外电子分为7层,最外层都是2个电子,次外层多数为8个电子(个别为9或10个电子),从镤到锘电子填入第5层,使第5层电子数从18个增加到32个。 1789年德国馬丁·克拉普羅特从沥青铀矿中发现了铀,它是被人们认识的第一个锕系元素。其后陆续发现了锕、钍和镤。铀以后的元素都是在1940年后用人工核反应合成的,稱為人工合成元素。.
臨界質量
臨界質量(Critical mass)是指維持核子連鎖反應所需的裂變材料質量。不同的可裂變材料,受核子的性質(如裂變橫切面)、物理性質、物料型狀、純度、是否被中子反射物料包圍、是否有中子吸收物料等等因素影響,而會有不同的臨界質量。 剛好可以產生連鎖反應的組合,稱為已達臨界點。比這樣更多質量的組合,核反應的速率會以指數增長,稱為超臨界。如果組合能夠在沒有延遲放出中子之下進行連鎖反應,這種臨界被稱為即發臨界,是超臨界的一種。即發臨界組合會產生核爆炸。如果組合比臨界點小,裂變會隨時間減少,稱之為次臨界。 恩里科·費米最先發現超臨界組合,不一定同時是超過即發臨界。他的發現開展了受控制的連鎖反應的研究,後來發展的核子反應堆及核能都是出於這一發現。.
自發裂變
自發裂變(Spontaneous fission)是一種放射性衰變,只發生於原子量高的化學元素。由於元素的核結合能在原子量約為58個原子質量單位(u)時最高,因此更高質量的原子核會自發性分解為較小的數個原子核,以及一些單獨的核子。 由於裂變形成的產物原子核有限制,所以在一些原子量大於92原子質量單位(a.m.u)的原子核也理論上能夠進行自發裂變,而其自發裂變的概率隨著原子量的上升而增加。 理論上能夠自發裂變的最輕自然核素為鈮-93和鉬-94(原子序分別為41和42)。在自然產生的鈮和鉬同位素中卻沒有觀察到自發裂變。它們一般是穩定同位素。 時長允許觀察的自發裂變只發生在原子量為232 a.m.u.或以上的原子核。其中最輕的同位素為釷-232,其半衰期大於宇宙的年齡。釷-232是仍存有進行自發裂變的證據的最輕原始核素。 已知元素中,最容易進行自發裂變的是高原子序的錒系元素中擁有奇數原子序的鍆和鐒,以及一些錒系後元素,如鑪.
镧系元素
镧系元素是第57号元素镧到71号元素镥15种元素的统称。镧系元素的外层和次外层的电子构型基本相同,电子逐一填充到4f轨道上。镧系元素也属于过渡元素,只是镧系元素新增加的电子大都填入了从外侧数第三个电子层(即4f电子层)中,所以镧系元素又可以称为4f系。为了区别于元素周期表中的d区过渡元素,故又将镧系元素(及锕系元素)称为内过渡元素。由于镧系元素都是金属,所以又可以和锕系元素统称为f区金属。镧系元素用符号Ln表示。 所有镧系元素既能生成化学性质类似的三价化合物,个别镧系元素也能生成比较稳定或不很稳定的四价或二价化合物,所以15个元素的化学性质并不完全相似,在光学、电磁学等物理性质也有较大的差别。 镧系元素原子基态的电子构型是4f0~145d0~16s2。.
镅
鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.
核反应堆
核反应堆(nuclear reactor)是一种启动、控制并维持核裂变或核聚變链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆有许多用途,当前最重要的用途是产生热能,用以代替其他燃料加热水,产生蒸汽发电或驱动航空母舰等设施运转。一些反应堆被用来生产为医疗和工业用途的同位素,或用于生产武器级钚。一些反应堆运行仅用于研究。当前全部商业核反应堆都是基于核裂变的。今天,在世界各地的大约30个国家里有被用于发电的大约450个核反应堆。.
核裂变
核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.
核试验
核試驗(nuclear test),又稱核試爆,是为了军事研究和科学研究目的,對核爆炸装置或核子武器在预定条件下作出實際的爆破試驗。不少國家在20世紀均發展出核武並試驗,有關部門可透過這些試驗去瞭解這些武器如何運作。其主要目的是:鉴定核爆炸装置的威力及其他性能,验证理论计算和结构设计是否合理,为改进核武器设计或定型生产提供依据;在核爆炸环境下研究核爆炸现象学和各种杀伤破坏因素的变化规律;研究核爆炸的和平利用等。它是一项规模很大、需要多学科、多部门协同配合和耗费大量人力、物力的科学试验。然而在歷史上大部分的核試驗中,多半帶有政治上威嚇的意味。.
格倫·西奧多·西博格
格伦·西奥多·西博格 (Glenn Teodor Sjöberg,Glenn Theodore Seaborg,),美国核化学家。鉴于西博格在超铀元素方面的杰出贡献,他与麦克米伦(镎的主要发现者)共同荣获1951年诺贝尔化学奖。之后,国际纯粹与应用化学联合会(IUPAC)在1997年8月举行的国际会议上,决定用西博格的名字命名由阿伯特·吉奧索(A.Ghiorso)和他发现的106号元素𨭎(Sg),打破了不能以健在人姓名为化学元素命名的惯例。.
正交晶系
正交晶系,也叫斜方晶系。 该晶系特点是没有高次对称轴,二次对称轴和对称面总和不少于三个。晶体以这三个互相垂直的二次轴或对称面法线为结晶轴。α.
氡
氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.
氢
氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.
氮
氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.
施普林格科学+商业媒体
施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.
施普林格科学+商业媒体和锎 · 施普林格科学+商业媒体和锔 ·
放射性
放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.
放射性同位素
放射性同位素(radionuclide,或radioactive nuclide),一種具有放射性的核素。是一種原子核不穩定的原子,每個原子也有很多同位素,每組同位素的原子序雖然是相同,但是卻有著不同的原子量,如果這原子是有放射性的話,它會被稱為物理放射性核種或放射性同位素。放射性同位素會進行放射性衰變,從而放射出伽瑪射線,和次原子粒子。 化學家和生物學家都把放射性同位素的技術應用在我們的食品、水和身體健康等事項上。不過他們也察覺到危險性,因而制訂使用的安全守則。有些放射性同位素是天然存在的,有些則是人工製造的,稱為人造放射性同位素。.
放射性落下灰
放射性落下灰,也称放射性沉降物、放射性落塵、輻射落塵或原子尘,是核弹爆炸或核反应堆泄漏后从天而降的放射性尘埃,含有大量放射性元素,是一种放射性污染。核弹爆炸产生的辐射尘中含有大量半衰期很短的放射性元素,相当致命,动物表皮沾染后可引起皮肤β射线损伤,进而可以导致整条食物链的污染。.
晶体结构
晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.
上面的列表回答下列问题
- 什么锎和锔的共同点。
- 什么是锎和锔之间的相似性
锎和锔之间的比较
锎有111个关系,而锔有132个。由于它们的共同之处44,杰卡德指数为18.11% = 44 / (111 + 132)。
参考
本文介绍锎和锔之间的关系。要访问该信息提取每篇文章,请访问: