徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

锂和非线性光学

快捷方式: 差异相似杰卡德相似系数参考

锂和非线性光学之间的区别

锂 vs. 非线性光学

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。. 非线性光学主要用来研究非线性的光学现象和理论。 介质产生的极化强度决定于入射光的电场强度,其作用可用多项式展开成多阶形式.在通常的弱光条件下,高阶项因为系数很小而可以忽略,此时可近似看成一种线性关系。但是在强激光场作用下(通常在108 V/m左右,由激光脉冲提供),极化强度的高阶项强度不可被忽略,非线性作用出现,从而可以实现光和光之间的相互作用。入射光的强度越高,高阶非线性效应越明显。非线性光学直到激光出现后,人们对二次谐波产生的发现才发展起来。(Peter Franken et al. at University of Michigan in 1961) 非线性光学包括光学倍频、混频、参量振荡、克尔效应、光孤子等现象。利用强度极高的飞秒激光可以产生高达上百倍的倍频效应,可以用来产生深紫外光和软 X 射线。常用于产生非线性效应的物质有铌酸锂、钽酸锂、磷酸氧鈦鉀(KTP)、磷酸二氫鉀(KDP)、偏硼酸钡(BBO)等晶体(具有高的2阶非线性系数)及稀有气体(主要用于产生高阶非线性效应)。光参量振荡(OPO)是目前产生大范围连续可调波长(波长从红外到可见光甚至紫外光)激光的唯一方法。.

之间锂和非线性光学相似

锂和非线性光学有(在联盟百科)2共同点: 稀有气体電極化

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

稀有气体和锂 · 稀有气体和非线性光学 · 查看更多 »

電極化

在经典电磁学裏,當給電介質施加一個電場時,由於電介質內部正負電荷的相對位移,會產生電偶極子,這現象稱為電極化(electric polarization)。施加的電場可能是外電場,也可能是嵌入電介質內部的自由電荷所產生的電場。因為電極化而產生的電偶極子稱為“感應電偶極子”,其電偶極矩稱為“感應電偶極矩”。 電極化強度又稱為「電極化矢量」,定義為電介質內的電偶極矩密度,也就是單位體積的電偶極矩。這定義所指的電偶極矩包括永久電偶極矩和感應電偶極矩。它的國際單位制度量單位是庫侖每平方米(coulomb/m2),表示为矢量 P。McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3.

锂和電極化 · 電極化和非线性光学 · 查看更多 »

上面的列表回答下列问题

锂和非线性光学之间的比较

锂有98个关系,而非线性光学有15个。由于它们的共同之处2,杰卡德指数为1.77% = 2 / (98 + 15)。

参考

本文介绍锂和非线性光学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »