之间配合物和配體相似
配合物和配體有(在联盟百科)22共同点: 原子,官能团,三苯基膦,一氧化碳,乙二胺,乙二胺四乙酸,哈普托數,硝酸盐,硫酸铜,磷化氢,离子,草酸盐,齿合度,配合物,酸碱电子理论,Hexol,橋接配體,氢氧根,氨,氰化物,有机化学,普鲁士蓝。
原子
原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.
官能团
官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.
三苯基膦
三苯基膦,分子式(C6H5)3P,白色固体,是磷化氢的三苯(苯、甲苯、二甲苯)取代物。主要表现为还原性和亲核性。在有机合成中有相当广泛的应用。.
一氧化碳
一氧化碳,分子式CO,是無色、無嗅、無味的无机化合物氣體,比空氣略輕。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一氧化碳是含碳物质不完全燃烧的产物。也可以作为燃料使用,煤和水在高温下可以生成水煤气(一氧化碳与氢气的混合物)。有些現代技術,如煉鐵,還是會產生副產品的一氧化碳。一氧化碳是可用作身體自然調節炎症反應的三種氣體之一(其他兩種是一氧化氮和硫化氫)。 由于一氧化碳与体内血红蛋白的亲和力比氧与血红蛋白的亲和力大200-300倍,而碳氧血红蛋白较氧合血红蛋白的解离速度慢3600倍,当一氧化碳浓度在空气中达到35ppm,就会对人体产生损害,會造成一氧化碳中毒(又称煤气中毒)。 雖然一氧化碳有毒,但動物代謝亦會產生少量一氧化碳,並認為有一些正常的生理功能。.
乙二胺
乙二胺(作為配體時簡稱為en)是化學式為 C2H4(NH2)2 的有機化合物。乙二胺是一種胺類,為無色的鹼性液體,有類似氨的臭味。2008年乙二胺的使用量約500,000,000公斤。Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag, Weinheim.
乙二胺四乙酸
乙二胺四乙酸(Ethylenediaminetetraacetic acid),常缩写为EDTA,是一种有机化合物。它是一個六齿配體,可以螯著多種金屬離子。它的4個酸和2個胺的部分都可作為配體的齿,與錳(II)、銅(II)、鐵(III)及鈷(II)等金屬離子組成螯合物。.
乙二胺四乙酸和配合物 · 乙二胺四乙酸和配體 ·
哈普托數
哈普托數(英文hapticity)是說明在配體中一群相連的原子如何和中心原子配位。配體的hapticity會用希臘字母η來表示,η上標的數字表示配體中有幾個相連的原子和中心原子配位。一般來說上述的標示只適用在不只一個原子參與配位的情形。 如二茂鐵中環戊二烯(Cp)有五個原子參與鍵結,因此其哈普托數為5。 在有機金屬化學中,常用哈普托數來標示有機的配體如何和中心金屬配位。 Category:配位化學 Category:有機金屬化學.
硝酸盐
硝酸鹽是一個多原子離子其分子式NO3−和分子量62.0049克/mol。硝酸鹽同樣描述為有機官能團RONO2。這些硝酸酯是一專業炸藥。 CP#3是硝酸根离子NO3−形成的盐。许多金属都能形成硝酸盐,包括无水盐或水合物。.
硫酸铜
硫酸铜,又稱藍礬,化学式CuSO4,無水為白色粉末,含水为藍色粉末,或因不纯而呈淡灰绿色,是可溶性铜盐。硫酸铜常见的形态为其结晶体,一水合硫酸四水合铜([Cu(H2O)4]SO4·H2O,五水合硫酸铜),为蓝色固体。其水溶液因水合铜离子的缘故而呈现出蓝色,故在实验室里无水硫酸铜常被用于检验水的存在。在现实生产生活中,硫酸铜常用于炼制精铜,與熟石灰混合可製农药波尔多液。硫酸铜属于重金属盐,有毒,成人致死剂量0.9g/kg。若误食,应立即大量食用或飲用牛奶、鸡蛋清等富含蛋白质食品,或者使用EDTA钙钠盐解毒。.
磷化氢
磷化氢,又名膦,分子式:,一种无色、极毒、有魚腥臭味的气体。.
离子
離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.
草酸盐
草酸盐是草酸形成的盐类,含有草酸根离子(C2O42−或(COO)22−)。由于草酸是二元酸,因此草酸盐分为正盐草酸盐与酸式盐草酸氢盐两类,后者含有HC2O4−。 草酸根离子(见右图)可作配体,与很多金属离子形成配合物,尤其是螯合物。该离子中,含有一个平面的八电子π体系,电子稳定性特别突出。它属于还原性阴离子,可被氧化剂,如高锰酸钾氧化为二氧化碳。 草酸盐有毒,人吞食可能發生草酸盐中毒,导致肾脏疾病甚至死亡。草酸根离子可沉淀钙离子,生成不溶于水的草酸钙。.
齿合度
齒合度(denticity)是一個配位化學的名詞,是指在錯合物中,單一配體和中心原子產生鍵結的原子個數。 通常配體只有一個原子和中心原子鍵結,因此齒合度為1,這種的配體也稱為單齒配體。雙齒配體(如草酸根、乙二胺)有二個原子和中心原子鍵結,齒合度為2。EDTA由六個不同的原子和中心原子鍵結,因此EDTA為六齒配體,齒合度為6。 齒合度的英文名稱denticity和dentist(牙醫)有相同表示牙齒的字根。齒合度可以想成是配體以一個點或多個點「咬住」中心原子。 齒合度和哈普托數(hapticity)不同,後者是在配體不是單一原子和中心原子鍵結的情形下,配體參與和中心原子鍵結的電子數。.
配合物
配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.
酸碱电子理论
酸碱电子理论,也称广义酸碱理论、路易斯酸碱理论,是1923年美国化学家吉尔伯特·路易斯提出的一种酸碱理论。该理论认为:凡是可以接受外来电子对的分子、基团或离子为酸(路易斯酸);凡可以提供电子对的分子、基团或离子为碱(路易斯碱)。因為跳脫了限定氫離子與氫氧根的酸鹼概念,这种理论包含的酸碱范围很广,但是,它对确定酸碱的相对强弱来说,没有统一的标度,对酸碱的反应方向难以判断。后来,提出的软硬酸碱理论弥补了这种理论的缺陷。 常見的路易斯酸有:.
配合物和酸碱电子理论 · 配體和酸碱电子理论 ·
Hexol
Hexol分子式为(SO4)3,是阿尔弗雷德·维尔纳在1914年以硫酸钴(Ⅱ)为起始原料合成的一种无机有旋光异构性的配合物。它从结构上来讲是一个以羟桥相连的四核钴配合物,也是第一个制得的纯粹不含碳的手性分子,摩尔旋光为−47610°,这是一般有光学活性的有机化合物所无法比拟的。 在制得该配合物后,维尔纳又成功地拆分出左旋体和右旋体。该拆分过程中,维尔纳先用hexol的氯化物盐与手性拆分剂D-(+)-溴代樟脑磺酸银盐反应,沉淀出D-hexol与之生成的盐,然后过滤,并对滤渣和滤液分别进行处理,便可得到D-hexol和L-hexol。hexol的制备和拆分的成功有力证明了维尔纳配位理论的真实和正确性,从而奠定了配位化学的基础。 此外,维尔纳从制备Fremy盐的副产物中,又得到了第二种hexol。该hexol分子不含有手性,维尔纳错误地认为它是一个具有直线型的三核钴结构的配合物: 2004年,对上述hexol的重新分析发现它实际上是一个六核的配合物:.
橋接配體
橋接配體(或称桥联配体、桥连配体)是連接二個或二個以上原子(通常是金屬原子)的配體。配體本身可以是單原子,也可以由多個原子組成。由於所有複雜的有機化合物都可以擔任橋接配體的角色,因此「橋接配體」一詞一般是指較小的配基(如鹵素和擬鹵素)或是特別用來連結二個金屬原子的配基。 在命名有橋接配體的錯合物時,橋接配體前會標示一個帶有上標數字的μ,上標數字表示橋接配體所連接的原子個數。而μ2常會簡稱μ。.
氢氧根
氫氧離子,化學符號為OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常與不同的元素組成氫氧化物。.
氨
氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.
氰化物
--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.
有机化学
有机化学是研究有机化合物及有機物質的结构、性质、反應的学科,是化学中极重要的一个分支。有机化学研究的對象是以不同形式包含碳原子的物質 ,又称为碳化合物的化学。 有關有机化合物或有機物質結構的研究包括用光譜、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化學方式來確認其組成的元素、組成方式、實驗式及化學式。有關性質的研究包括其物理性質及化學性質,也需評估其,目的是要了解有機物質在其純物質形式(若是可能的話),以及在溶液中或是混合物中的性質。有機反應的研究包括有機物質的製備(可能是有機合成或是其他方式),以及其化學反應,可能是在實驗室中的,或是In silico(經由電腦模擬的)。 有机化学研究的範圍包括碳氫化合物,也就是只由碳和氫組成的化合物,化合物中也有可能还会参与其他的元素,包括氢、 氮、氧和卤素,还有诸如磷、硅、硫等元素。 。有机化学和許多相關領域有重疊,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。 有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能基,这种性质造就有机化合物的多样性。有機化合物是所有碳基生物的基礎。有機化合物的應用範圍很廣,包括醫學、塑膠、藥物、、食物、化妆品、护理用品、炸藥及塗料等。.
普鲁士蓝
普魯士藍(Prussian blue;Preußisch Blau 或 Berliner Blau;化學名稱:亞鐵氰化鐵;分子式:Fe7(CN)18⋅14H2O,或書寫成 · x簡稱:PB)是一種深藍色的顏料,在畫圖和青花瓷器中應用。普魯士藍是狄斯巴赫(Johann Jacob Diesbach)在意外中被發現,他原本是打算製造紅色顏料的。滕士蓝(Turnbull's blue)与普鲁士蓝是同一种物质,只是由不同试剂制取的。 德国的前身普鲁士军队的制服颜色就是使用该种颜色,以至1871年德意志第二帝国成立后相当长一段时间仍然沿用普鲁士蓝军服,直至第一次世界大战前夕方更换成。 普鲁士蓝,或柏林蓝,或滕士蓝的扩展含义并非一种颜色,而是指氰化亚铁这种深蓝色染料。氰化亚铁染料本身在历史上已有多次出现,甚至可追溯至古埃及,直至据现有记载1706年由Johann Jacob Diesbach于柏林人工合成,后经现代手段分析,并开发出工业合成手段,由BASF前身IG Farben工业大批量生产。作为首次出现的工业合成染料,因氰化亚铁的稳定性,且不溶于水,其着色效果远强于以往的有机天然染料靛蓝,虽存在一定毒性,但被德意志第二帝国作为军服染料长时间使用,后北洋政府、国民政府也以其为正规军队的标准染料。再后在中国,因军阀纷争和日本入侵,中国军队的军服染料鱼龙混杂,从土黄到深蓝五花八门,而各路武装中,以国民政府“中央军”为优先供给单位,包括供应使用普鲁士蓝染料的军服统一着装,后又成为电视剧中的一个特色。.
上面的列表回答下列问题
- 什么配合物和配體的共同点。
- 什么是配合物和配體之间的相似性
配合物和配體之间的比较
配合物有180个关系,而配體有45个。由于它们的共同之处22,杰卡德指数为9.78% = 22 / (180 + 45)。
参考
本文介绍配合物和配體之间的关系。要访问该信息提取每篇文章,请访问: