徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

邁斯納效應

指数 邁斯納效應

邁斯納效應是超導體從一般狀態相變至超導態的過程中對磁場的排斥現象,於1933年時被瓦爾特·邁斯納與在量度超導錫及鉛樣品外的磁場時發現。在有磁場的情況下,樣品被冷卻至它們的超導相變溫度以下。在相變溫度以下時,樣品幾乎抵消掉所有裏面的磁場。他們只是間接地探測到這個效應;因為超導體的磁通量守恆,當裏面的場減少時,外面的場就會增加。這實驗最早證明超導體不只是完美的導電體,並為超導態提供一個獨特的定義性質。.

27 关系: 希格斯机制光速倫敦穿透深度倫敦方程BCS理论磁場磁化率磁通量粒子物理學瓦尔特·迈斯纳电阻特斯拉相變规范场论高溫超導高斯 (单位)超导现象超導體超抗磁性超流体钇钡铜氧電導率W及Z玻色子抗磁性永磁体海因茨·倫敦普朗克常数

希格斯机制

在標準模型裏,希格斯機制(Higgs mechanism)是一種生成質量的機制,能夠使基本粒子獲得質量。為什麼費米子、W玻色子、Z玻色子具有質量,而光子、膠子的質量為零?希格斯機制可以解釋這問題。希格斯機制應用自發對稱性破缺來賦予規範玻色子質量。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。根據希格斯機制,希格斯場遍佈於宇宙,有些基本粒子因為與希格斯場之間交互作用而獲得質量。 更仔細地解釋,在规范场论裏,為了滿足定域規範不變性,必須設定规范玻色子的质量為零。由於希格斯場的真空期望值不等於零,希格斯場在最低能量態的平均值,就是「希格斯場的真空期望值」。費曼微積分(Feymann calculus)用來計算的是希格斯場在最低能量態的振動,即希格斯玻色子。造成自發對稱性破缺,因此規範玻色子會獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希格斯玻色子則是伴隨著希格斯場的粒子,是希格斯場的振動。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希格斯玻色子與帶質量規範向量場。 費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在规范场论裏,為了滿足定域規範不變性,必須設定費米子的质量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。 本條目的數學表述內容需要讀者了解一些量子場論的知識。所有方程式都遵守愛因斯坦求合約定。按照粒子物理學慣例,採用CGS單位制為物理量的單位,並且設定光速與約化普朗克常數的數值為1。.

新!!: 邁斯納效應和希格斯机制 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 邁斯納效應和光速 · 查看更多 »

倫敦穿透深度

在超導體中,倫敦穿透深度(通常記作\lambda或\lambda_L)是指磁場穿進超導體中,並減弱為超導體表面處強度之\frac時的深度。 倫敦穿透深度一般為50至500奈米。 倫敦穿透深度是由倫敦方程和安培定律推導得出的。 如果考慮一個超導介質佔據x0,而弱外磁場B0作用在z方向。那麼,超導體內的磁感應強度為: 其中,\lambda_L 可以視為磁感應強度減弱原本\frac時的深度,具體表達為: 其中, m為帶電物體的質量,q為電荷,n 為數量密度。.

新!!: 邁斯納效應和倫敦穿透深度 · 查看更多 »

倫敦方程

倫敦方程把超導體的電流與其裏面及周圍的電磁場聯繫起來,這兩條方程是由弗里茨與海因茨·倫敦兩兄弟於1935年提出的。它們可被視為超導現象最簡單的有效描述,所以幾乎所有介紹超導的現代教科書,都會把倫敦方程視為入門必修課。這套方程組最大的成就,就在於它們成功地解釋了邁斯納效應;該效應指的是,當超導體溫度低於超導的門檻後,它會愈來愈快地排斥掉其內部所有的磁場。.

新!!: 邁斯納效應和倫敦方程 · 查看更多 »

BCS理论

BCS理论是解释常规超导体的超导电性的微观理论(所以也常意译为超导的微观理论)。该理论以其发明者约翰·巴丁、利昂·库珀和约翰·施里弗的名字首字母命名。.

新!!: 邁斯納效應和BCS理论 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 邁斯納效應和磁場 · 查看更多 »

磁化率

在電磁學中,磁化率(magnetic susceptibility)是表徵物質在外磁場中被磁化程度的物理量。.

新!!: 邁斯納效應和磁化率 · 查看更多 »

磁通量

磁通量,符號為 \Phi_B,是通過某给定曲面的磁場(亦称为磁通量密度)的大小的度量。磁通量的国际单位制單位是韦伯。.

新!!: 邁斯納效應和磁通量 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 邁斯納效應和粒子物理學 · 查看更多 »

瓦尔特·迈斯纳

尔特·迈斯纳(Walther Meißner,)是一位德国工程物理学家。 迈斯纳生于柏林,是瓦尔德马·迈斯纳和约翰娜·格雷格的儿子。他在柏林工业大学学习了机械工程和物理学,马克斯·普朗克是他的博士导师。后来他进入了德国标准计量机构。1922年到1925年,他制造了世界第三大的氦液化器,并在1933年发现迈斯纳效应,即超导态的过程中对磁场的排斥。一年后,他成为慕尼黑工业大学工程物理系主任。 二战之后,他成为巴伐利亚人文和自然科学院主席。1946年被指定为该学院首个低温研究委员会负责人。实验室一开始设在阿默湖畔黑尔兴,1965年搬到加兴。迈斯纳的最后几年是与两条狗一起度过的,1974年他去世于慕尼黑。.

新!!: 邁斯納效應和瓦尔特·迈斯纳 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

新!!: 邁斯納效應和电阻 · 查看更多 »

特斯拉

特斯拉(tesla),符号表示为T,是磁通量密度(Wb/m2)或磁感应强度的国际单位制导出单位。.

新!!: 邁斯納效應和特斯拉 · 查看更多 »

相變

變(Phase Change)是指物質在外部參數(如:溫度、壓力、磁場等等)連續變化之下,從一種相(態)忽然變成另一種相,最常見的是冰變成水和水變成蒸氣。然而,除了物體的三相變化(固態、液態、氣態)自然界還存在許許多多的相變現象,例如日常生活中另一種較常見的相變是加熱一塊磁鐵,磁鐵的鐵磁性忽然消失。其他在物理學中重要相變列舉如下:.

新!!: 邁斯納效應和相變 · 查看更多 »

规范场论

规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.

新!!: 邁斯納效應和规范场论 · 查看更多 »

高溫超導

溫超導(High-temperature superconductivity,High Tc)是一種物理現象,指一些具有較其他超導物質相對較高的臨界溫度的物質在液態氮的環境下產生的超導現象。.

新!!: 邁斯納效應和高溫超導 · 查看更多 »

高斯 (单位)

斯简称高,是CGS制中磁感应强度或磁通量的单位,为纪念德国数学家卡尔·弗里德里希·高斯而得名,常用符号G或Gs表示。.

新!!: 邁斯納效應和高斯 (单位) · 查看更多 »

超导现象

超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度(Tc)。超导现象的特征是零电阻和完全抗磁性。.

新!!: 邁斯納效應和超导现象 · 查看更多 »

超導體

超導體(superconductor),指可以在在特定溫度以下,呈現電阻為零的導體。零电阻和完全抗磁性是超导体的两个重要特性。超导体电阻转变为零的温度,称为超导临界温度,据此超导材料可以分为低温超导體和高温超导體。這裡的「高溫」是相对于绝对零度而言的,其實遠低於冰點攝氏0℃。科学家一直在寻求提高超导材料的临界温度,目前高温超导体的最高温度记录是马克普朗克研究所的203K(-70°C)。因为零電阻特性,超導材料在生成强磁场方面有许多應用,如MRI核磁共振成像等。.

新!!: 邁斯納效應和超導體 · 查看更多 »

超抗磁性

超抗磁性指某些物質在極低溫的環境下磁導率會降至零,而其磁化率 \chi_.

新!!: 邁斯納效應和超抗磁性 · 查看更多 »

超流体

超流體是一種物質狀態,特點是完全缺乏黏性。如果將超流體放置於環狀的容器中,由於沒有摩擦力,它可以永無止盡地流動。它能以零阻力通过微管,甚至能从碗中向上“滴”出而逃逸。超流體是被彼得·卡皮查、約翰·艾倫和冬·麥色納在1937年發現的。有關超流體的研究被稱為量子流體力學。氦-4的超流體現象理論是列夫·朗道創造的,而尼古拉·尼古拉耶维奇·博戈柳博夫是第一個建議使用微扰理论者。.

新!!: 邁斯納效應和超流体 · 查看更多 »

钇钡铜氧

钇钡铜氧,或称钇钡铜氧化物、YBCO,是化学式为YBa2Cu3O7的化合物。它是著名的高温超导体,属于第二类超导体,并且是第一个制得转变温度在液氮沸点以上的材料。.

新!!: 邁斯納效應和钇钡铜氧 · 查看更多 »

電導率

电导率(electric conductivity)是表示物质传输电流能力强弱的一种測量值。當施加電壓於導體的兩端時,其電荷載子會呈現朝某方向流動的行為,因而產生電流。電導率 \sigma\,\! 是以歐姆定律定義為電流密度 \mathbf\,\! 和電場強度 \mathbf\,\! 的比率: 有些物質會有異向性 (anisotropic) 的電導率,必需用 3 X 3 矩陣來表達(使用數學術語,第二階張量,通常是對稱的)。 電導率是电阻率 \rho\,\! 的倒數。在國際單位制中的單位是西門子/公尺 (S·m-1): 電導率儀 (electrical conductivity meter) 是一種是用來測量溶液電導率的儀器。.

新!!: 邁斯納效應和電導率 · 查看更多 »

W及Z玻色子

在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.

新!!: 邁斯納效應和W及Z玻色子 · 查看更多 »

抗磁性

抗磁性(Diamagnetism,亦作反磁性)是一些類別的物質,當處在外加磁場中,會對磁場產生的微弱斥力的一種磁性現象。.

新!!: 邁斯納效應和抗磁性 · 查看更多 »

永磁体

永久磁体是指能够长期保持其磁性的磁体。如天然的磁石(磁铁矿)和人造磁鐵(鋁鎳鈷合金)等。磁鐵中除永久磁鐵外,也有需通電才有磁性的電磁鐵。永久磁体也叫硬磁体,不易失磁,也不易被磁化。但若永久磁体加熱超過居里溫度,或位於反向高磁場強度的環境下中,其磁性也會減少或消失。 所有的永磁体均具有鐵磁性或亞鐵磁性,鐵磁性的物質(例如鐵)具有自發性的磁化現象,而亞鐵磁性的物質,因其中的亞晶格是由不同的材料或不同價態的鐵組成,不同亞晶格的原子磁矩相反但不相等,無法完全抵消,因此也有磁性,如磁鐵礦(鐵(II,III)氧化物;Fe3O4)即為一例。.

新!!: 邁斯納效應和永磁体 · 查看更多 »

海因茨·倫敦

海因茨·倫敦(Heinz London,)是一位德國(後來取得英國籍)物理學家。他在數所德國大學从事研究後,由於納粹的種族政策,不得不在1933年與他的哥哥弗里茨逃亡到英國。當海因茨·倫敦在牛津克拉倫登實驗室(Clarendon Laboratory)進行研究時,他與弗里茨·倫敦(Fritz London)於1935年提出倫敦方程式,成功地解釋了邁斯納效應;該效應指的是,當超導體溫度低於超導的門檻後,它會愈來愈快地排斥掉其內部所有的磁場。.

新!!: 邁斯納效應和海因茨·倫敦 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 邁斯納效應和普朗克常数 · 查看更多 »

重定向到这里:

麥士納效應

传出传入
嘿!我们在Facebook上吧! »