我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

連續性方程式

指数 連續性方程式

在物理學裏,連續性方程式(continuity equation)乃是描述守恆量傳輸行為的偏微分方程式。由於在各自適當條件下,質量、能量、動量、電荷等等,都是守恆量,很多種傳輸行為都可以用連續性方程式來描述。 連續性方程式乃是定域性的守恆定律方程式。與全域性的守恆定律相比,這種守恆定律比較強版。在本條目內的所有關於連續性方程式的範例都表達同樣的點子──在任意區域內某種守恆量總量的改變,等於從邊界進入或離去的數量;守恆量不能夠增加或減少,只能夠從某一個位置遷移到另外一個位置。 每一種連續性方程式都可以以積分形式表達(使用通量積分),描述任意有限區域內的守恆量;也可以以微分形式表達(使用散度算符),描述任意位置的守恆量。應用散度定理,可以從微分形式推導出積分形式,反之亦然。.

目录

  1. 43 关系: 动量动量守恒定律基爾霍夫電路定律偏微分方程向量恆等式列表实验式守恒定律守恆量安培定律不可壓縮流光速四維電流密度磁場納維-斯托克斯方程式純量勢真空磁导率真空电容率热力学热传导熱導率馬克士威方程組高斯定律高斯重力定律高斯散度定理诺特定理质量质量通量能量薛定谔方程量子力学電場電荷電荷密度電路學通量連續性方程式機率流欧拉方程 (流体动力学)温度流体力学时空旋度散度

  2. 流体力学中的方程

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

查看 連續性方程式和动量

动量守恒定律

动量守恒定律(Conservation of momentum):如果物体系受到的合外力为零,则系统内各物体动量的矢量合保持不变,系統質心維持原本的運動狀態。.

查看 連續性方程式和动量守恒定律

基爾霍夫電路定律

基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電機工程學。 從馬克士威方程組可以推導出基爾霍夫電路定律。但是,基爾霍夫並不是依循這條思路發展,而是從格奧爾格·歐姆的工作成果加以推廣得之。.

查看 連續性方程式和基爾霍夫電路定律

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

查看 連續性方程式和偏微分方程

向量恆等式列表

這條目陳列一些常用的向量代數的恆等式。.

查看 連續性方程式和向量恆等式列表

实验式

实验式(或稱简式、最简式)不能区分最简个数比相同的几种化学物质,更不能解释结构或区分同分异构体。如,对于正己烷而言,它的示性式为CH3CH2CH2CH2CH2CH3,可以表明它的直链结构及分子中的碳氢原子个数;而它的最簡式则为C3H7,3和7最大公因数为1。.

查看 連續性方程式和实验式

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

查看 連續性方程式和守恒定律

守恆量

在經典力學裏,對於一個動力系統,隨著時間的演進,所有保持不變的物理量都稱為守恆量(conserved quantity),又稱為運動常數。由於很多物理定律會表達某種守恆行為,對應的守恆量時常會出現於真實系統。例如,假設在某系統內涉及的作用力是保守力,則此系統的能量是守恆量。假設涉及的作用力是連心力,則此系統的角動量是守恆量。.

查看 連續性方程式和守恆量

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

查看 連續性方程式和安培定律

不可壓縮流

在連續介質力學裏,不可壓縮流是流速的散度等於零的流動,更精確地稱為等容流。這理想流動可以用來簡化理論分析。實際而言,所有的物質多多少少都是可壓縮的。請注意「等容」這術語指的是流動性質,不是物質性質;意思是說,在某種狀況,一個可壓縮流體會有不可壓縮流的動作。由於做了不可壓縮這假設,物質流動的主導方程式能夠極大地簡化。 不可壓縮流遵守以下方程式: 其中,\mathbf\,\! 是物質流動的速度。 根據連續方程式, 其中,\rho\,\! 是物質密度。 以隨體導數(material derivative)表達, 由於 \rho > 0\,\! ,一個流動是不可壓縮流,若且唯若 也就是說,隨著物質元素的移動,質量密度是常數。.

查看 連續性方程式和不可壓縮流

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

查看 連續性方程式和光速

四維電流密度

四維電流密度J是在相對論中,對應電磁學的電流密度以及電荷密度的四維矢量。 定義為: j是一般的電流密度,\rho是電荷密度,c是光速。.

查看 連續性方程式和四維電流密度

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

查看 連續性方程式和磁場

納維-斯托克斯方程式

#重定向 纳维-斯托克斯方程.

查看 連續性方程式和納維-斯托克斯方程式

純量勢

純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.

查看 連續性方程式和純量勢

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

查看 連續性方程式和真空磁导率

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

查看 連續性方程式和真空电容率

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J.

查看 連續性方程式和热力学

热传导

热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可以做热交换器材料,而金屬傳導能力依次爲銀>銅>金>鋁;传导性能不好的,如石棉,可以做热绝缘材料。.

查看 連續性方程式和热传导

熱導率

热导率k是指材料直接传导热能的能力,或称热传导率。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的熱能。热导率的单位为瓦米-1开尔文-1 W \over\ m K。 热导率k.

查看 連續性方程式和熱導率

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

查看 連續性方程式和馬克士威方程組

高斯定律

斯定律(Gauss' law)表明在闭合曲面内的电荷分佈與產生的電場之間的關係:.

查看 連續性方程式和高斯定律

高斯重力定律

斯重力定律也称为高斯引力通量定律, 描述的是通过一个闭曲面的引力通量与其中包含的质量之间的关系, 本质上等价于牛顿万有引力定律.

查看 連續性方程式和高斯重力定律

高斯散度定理

斯公式,又称为散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。 更加精确地说,高斯公式说明向量场穿过曲面的通量,等于散度在曲面圍起來的體積上的积分。直观地,所有源点的和减去所有汇点的和,就是流出這区域的淨流量。 高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。 在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。 这个定理是更一般的斯托克斯公式的特殊情形。.

查看 連續性方程式和高斯散度定理

诺特定理

诺特定理是理论物理的中心结果之一,它表达了连续对称性和守恒定律的一一对应。例如,物理定律不随着时间而改变,这表示它们有关于时间的某种对称性。如果我们想象一下,譬如重力的强度每天都有所改变,我们就会违反能量守恒定律,因为我们可以在重力弱的那天把重物举起,然后在重力强的时候放下来,这样就得到了比我们开始输入的能量更多的能量。 诺特定理对于所有基于作用量原理的物理定律是成立的。它得名于20世纪初的数学家埃米·诺特。诺特定理和量子力学深刻相关,因为它仅用经典力学的原理就可以认出和海森堡测不准原理相关的物理量(譬如位置和动量)。.

查看 連續性方程式和诺特定理

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

查看 連續性方程式和质量

质量通量

质量通量(mass flux)是指單位時間內通過單位面積的質量,常用j、J、φ或Φ 表示,有時會加下標m表示是針對質量的通量。其國際標準制單位為kg s-1 m-2。.

查看 連續性方程式和质量通量

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

查看 連續性方程式和能量

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

查看 連續性方程式和薛定谔方程

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 連續性方程式和量子力学

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

查看 連續性方程式和電場

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

查看 連續性方程式和電荷

電荷密度

在電磁學裏,電荷密度是一種度量,描述電荷分佈的密度。電荷密度又可以分類為線電荷密度、面電荷密度、體電荷密度。 假設電荷分佈於一條曲線或一根直棒子,則其線電荷密度是每單位長度的電荷密度,單位為庫侖/公尺 (coulomb/meter) 。假設電荷分佈於一個平面或一個物體的表面,則其面電荷密度是每單位面積的電荷密度,單位為庫侖/公尺2。假設電荷分佈於一個三維空間的某區域或物體內部,則其體電荷密度是每單位體積的電荷密度,單位為庫侖/公尺3。 由於在大自然裏,有兩種電荷,正電荷和負電荷,所以,電荷密度可能會是負值。電荷密度也可能會跟位置有關。特別注意,不要將電荷密度與電荷載子密度 (charge carrier density) 搞混了。 電荷密度與電荷載子的體積有關。例如,由於鋰陽離子的半徑比較小,它的體電荷密度大於鈉陽離子的體電荷密度。.

查看 連續性方程式和電荷密度

電路學

電路學(Circuitry),以克希荷夫定律(Kirchhoff's rules)為基礎,探討電子元件之「電壓」與「電流」關係;或是探討放大,雜音的關係。工程師利用電子元件來設計「電子電路」,並產生電路圖來表現,以實現所需的功能。.

查看 連續性方程式和電路學

通量

通量,或稱流束是通過一個表面或一個物質的量,是一个物理学概念。在热学和流体力学领域中,是指在单位时间内通过单位面积的流量,它是一个向量;在电磁学领域中,是指在单位面积上垂直于其表面的磁场或电场的强度,它是一个标量。.

查看 連續性方程式和通量

連續性方程式

在物理學裏,連續性方程式(continuity equation)乃是描述守恆量傳輸行為的偏微分方程式。由於在各自適當條件下,質量、能量、動量、電荷等等,都是守恆量,很多種傳輸行為都可以用連續性方程式來描述。 連續性方程式乃是定域性的守恆定律方程式。與全域性的守恆定律相比,這種守恆定律比較強版。在本條目內的所有關於連續性方程式的範例都表達同樣的點子──在任意區域內某種守恆量總量的改變,等於從邊界進入或離去的數量;守恆量不能夠增加或減少,只能夠從某一個位置遷移到另外一個位置。 每一種連續性方程式都可以以積分形式表達(使用通量積分),描述任意有限區域內的守恆量;也可以以微分形式表達(使用散度算符),描述任意位置的守恆量。應用散度定理,可以從微分形式推導出積分形式,反之亦然。.

查看 連續性方程式和連續性方程式

機率流

在量子力學裏,機率流,又稱為機率通量,是描述機率密度流動的物理量。假若將機率密度想像為非均勻流體。那麼,機率流就是這流體的流率(機率密度乘以速度)。.

查看 連續性方程式和機率流

欧拉方程 (流体动力学)

在流體動力學中,歐拉方程是一組支配無黏性流體運動的方程,以萊昂哈德·歐拉命名。方程組各方程分別代表質量守恆(連續性)、動量守恆及能量守恆,對應零黏性及無熱傳導項的納維-斯托克斯方程。歷史上,只有連續性及動量方程是由歐拉所推導的。然而,流體動力學的文獻常把全組方程——包括能量方程——稱為“歐拉方程”。 跟納維-斯托克斯方程一樣,歐拉方程一般有兩種寫法:“守恆形式”及“非守恆形式”。守恆形式強調物理解釋,即方程是通過一空間中某固定體積的守恆定律;而非守恆形式則強調該體積跟流體運動時的變化狀態。 歐拉方程可被用於可壓縮性流體,同時也可被用於非壓縮性流體——這時應使用適當的狀態方程,或假設流速的散度為零。 本條目假設經典力學適用;當可壓縮流的速度接近光速時,詳見相對論性歐拉方程。.

查看 連續性方程式和欧拉方程 (流体动力学)

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

查看 連續性方程式和温度

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

查看 連續性方程式和流体力学

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

查看 連續性方程式和时空

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

查看 連續性方程式和旋度

散度

散度或稱發散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。举例来说,考虑空间中的静电场,其空间里的电场强度是一个矢量场。正电荷附近,电场线“向外”发射,所以正电荷处的散度为正值,电荷越大,散度越大。负电荷附近,电场线“向内”,所以负电荷处的散度为负值,电荷越大,散度越小。向量函數的散度為一個純量,而纯量的散度是向量函数。.

查看 連續性方程式和散度

另见

流体力学中的方程

亦称为 连续方程式,連續方程。