我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

透射係數和量子穿隧效應

快捷方式: 差异相似杰卡德相似系数参考

透射係數和量子穿隧效應之间的区别

透射係數 vs. 量子穿隧效應

透射係數專門表示透射波的振幅或強度,相對於入射波的振幅或強度。當波從一種介質傳播到另外一種不同的介質的時候,當波傳播的介質有不連續處的時候,就會有透射與反射的產生。原本傳播的波,稱為入射波。透過不連續處的波,稱為透射波。沒有透過不連續處,而反向傳播的波,稱為反射波。 在不同的學術界,透射係數有不同的定義。. 在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

之间透射係數和量子穿隧效應相似

透射係數和量子穿隧效應有(在联盟百科)6共同点: 量子力学WKB近似概率振幅有限位勢壘普朗克常数

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

透射係數和量子力学 · 量子力学和量子穿隧效應 · 查看更多 »

WKB近似

在量子力學裏,WKB近似是一種半經典計算方法,可以用來解析薛丁格方程式。喬治·伽莫夫使用這方法,首先正確地解釋了阿爾法衰變。WKB近似先將量子系統的波函數,重新打造為一個指數函數。然後,半經典展開。再假設波幅或相位的變化很慢。通過一番運算,就會得到波函數的近似解。.

WKB近似和透射係數 · WKB近似和量子穿隧效應 · 查看更多 »

概率

--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.

概率和透射係數 · 概率和量子穿隧效應 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

振幅和透射係數 · 振幅和量子穿隧效應 · 查看更多 »

有限位勢壘

在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.

有限位勢壘和透射係數 · 有限位勢壘和量子穿隧效應 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

普朗克常数和透射係數 · 普朗克常数和量子穿隧效應 · 查看更多 »

上面的列表回答下列问题

透射係數和量子穿隧效應之间的比较

透射係數有11个关系,而量子穿隧效應有142个。由于它们的共同之处6,杰卡德指数为3.92% = 6 / (11 + 142)。

参考

本文介绍透射係數和量子穿隧效應之间的关系。要访问该信息提取每篇文章,请访问: