我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

近似和迭代法

快捷方式: 差异相似杰卡德相似系数参考

近似和迭代法之间的区别

近似 vs. 迭代法

近似或是逼近是指一個事物和另一事物類似,但不是完全相同。近似可以用在許多性質上,是指幾乎一様,但沒有完全一様的情形。 近似最常用在數字上,也常用在數學函數、形狀及物理定律中。 在科學上,會將一物理現象轉換為一個有相似結構的模型,當準確的模型難以應用時,會用一個較簡單的模型來近似,簡化中間的計算,例如用球棒模型來近似實際化學分子中原子的分佈。當由於資訊不完整,無法確切陳述特定事物時,也可以用近似的方式處理。 近似的種類會依照可以取得的資訊、需要的準確程度及使用近似可以節省的時間及精力而定。. 迭代法(Iterative Method),在计算数学中,迭代是通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的数学过程,为实现这一过程所使用的方法统称。 跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题,例如通过开方解决方程x^2.

之间近似和迭代法相似

近似和迭代法有(在联盟百科)3共同点: 牛顿法迭代最小二乘法

牛顿法

牛顿法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(y).

牛顿法和近似 · 牛顿法和迭代法 · 查看更多 »

迭代

迭代是重复反馈过程的活动,其目的通常是为了接近并到达所需的目标或结果。每一次对过程的重复被称为一次“迭代”,而每一次迭代得到的结果会被用来作为下一次迭代的初始值。.

近似和迭代 · 迭代和迭代法 · 查看更多 »

最小二乘法

最小二乘法(又称--)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 “最小平方法”是對過度確定系統,即其中存在比未知數更多的方程組,以迴歸分析求得近似解的標準方法。在這整個解決方案中,最小平方法演算為每一方程式的結果中,將殘差平方和的總和最小化。 最重要的應用是在曲線擬合上。最小平方所涵義的最佳擬合,即殘差(殘差為:觀測值與模型提供的擬合值之間的差距)平方總和的最小化。當問題在自變量(x變量)有重大不確定性時,那麼使用簡易迴歸和最小平方法會發生問題;在這種情況下,須另外考慮變量-誤差-擬合模型所需的方法,而不是最小平方法。 最小平方問題分為兩種:線性或普通的最小平方法,和非線性的最小平方法,取決於在所有未知數中的殘差是否為線性。線性的最小平方問題發生在統計迴歸分析中;它有一個封閉形式的解決方案。非線性的問題通常經由迭代細緻化來解決;在每次迭代中,系統由線性近似,因此在這兩種情況下核心演算是相同的。 最小平方法所得出的多項式,即以擬合曲線的函數來描述自變量與預計應變量的變異數關係。 當觀測值來自指數族且滿足輕度條件時,最小平方估計和最大似然估计是相同的。最小平方法也能從動差法得出。 以下討論大多是以線性函數形式來表示,但對於更廣泛的函數族,最小平方法也是有效和實用的。此外,迭代地將局部的二次近似應用於或然性(藉由費雪信息),最小平方法可用於擬合廣義線性模型。 其它依據平方距離的目標加總函數作為逼近函數的主題,請參見最小平方法(函數近似)。 最小平方法通常歸功於高斯(Carl Friedrich Gauss,1795),但最小平方法是由阿德里安-马里·勒让德(Adrien-Marie Legendre)首先發表的。.

最小二乘法和近似 · 最小二乘法和迭代法 · 查看更多 »

上面的列表回答下列问题

近似和迭代法之间的比较

近似有44个关系,而迭代法有24个。由于它们的共同之处3,杰卡德指数为4.41% = 3 / (44 + 24)。

参考

本文介绍近似和迭代法之间的关系。要访问该信息提取每篇文章,请访问: