徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

超铀元素和镄

快捷方式: 差异相似杰卡德相似系数参考

超铀元素和镄之间的区别

超铀元素 vs. 镄

超铀元素在化学上指的是原子序数在92(铀)以上的重元素。原子序数从1到92的元素中,除了锝,钷,砹,钫4种物质以外,都可以很容易在地球上大量检测到,而且比较稳定,有很长的半衰期,或者是铀的普遍衰变物。 序数92以上的元素都是首先以人工合成的办法发现的。僅有少數的元素在地球上被發現自然生成,例如钚、镎、鉲等,因为他们都有放射性,半衰期短。可以在富铀的矿石中检测到钚的痕迹,在核试验后也有少量生成。它们是铀矿石经过中子俘获紧接着两次β衰变而成的:(238U → 239U → 239Np → 239Pu)。 这些元素现在可以用核反应堆或者粒子加速器人工合成。这些元素的半衰期有随着序数的增加而有缩短的趋势,然而也有例外:例如𨧀和锔的一些同位素。格伦·西奥多·西博格预言了在这一系列元素中更多的反常元素,并且把它们归类于“稳定岛”,即质子或中子为幻数的原子核具有特别的稳定性。 超铀元素中未发现的元素以及发现但未命名的元素,使用IUPAC元素系统命名法。超铀元素的命名曾引起很大的争论,104到109号元素命名的争论从二十世纪六十年代开始,一直到1997年才解决。. 鐨(Fermium)是一種人工合成元素,符號為Fm,原子序為100,屬於錒系元素。鐨是能夠用中子撞擊較輕元素而產生的最重元素,即是说它是最後一種能夠大量製成的元素。然而到目前為止,人們仍沒有製成純鐨。鐨一共擁有19種已知的同位素,其中257Fm存留時間最長,半衰期為100.5天。 鐨是在1952年第一次氫彈爆炸後的輻射落塵中發現的,並以諾貝爾獎得主原子核物理學家恩里科·費米(Enrico Fermi)命名。其化學屬性符合較重錒系元素的典型性质,有著形成+3氧化態的趨勢,但也能夠形成+2態。由於產量極少,鐨在基礎科學研究之外暫無實際用途。與其他人工合成的同位素一樣,鐨極具放射性,毒性亦很强。.

之间超铀元素和镄相似

超铀元素和镄有(在联盟百科)12共同点: 原子序数半衰期中子中子俘获核试验放射性

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

原子序数和超铀元素 · 原子序数和镄 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

半衰期和超铀元素 · 半衰期和镄 · 查看更多 »

中子

| magnetic_moment.

中子和超铀元素 · 中子和镄 · 查看更多 »

中子俘获

中子俘获是一种原子核与一个或者多个中子撞击,形成重核的核反应。由于中子不带电荷,它们能够比带一个正电荷的质子更加容易地进入原子核。 在宇宙形成过程中,中子俘获在一些质量数较大元素的核合成过程中起到了重要的作用。中子俘获在恒星里以快(R-过程)、慢(S-过程)两种形式发生。质量数大于56的核素不能够通过热核反应(即核聚变)产生,但是可以通过中子俘获产生。.

中子俘获和超铀元素 · 中子俘获和镄 · 查看更多 »

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

超铀元素和钚 · 钚和镄 · 查看更多 »

鍆是一個人工合成元素,符號為Md(曾為Mv),原子序為101。鍆是錒系元素中具有放射性的超鈾金屬元素,通常的合成方式是以α衰變撞擊鑀元素。鍆(Mendelevium)以最先創建元素週期表的德米特里·伊萬諾維奇·門捷列夫命名。門捷列夫的週期表成為了分類所有化學元素的最基本的方式。名稱Mendelevium被國際純粹與應用化學聯合會(IUPAC)所承認,但最初提出的符號Mv則未被接受,IUPAC最終於1963年改用Md。.

超铀元素和钔 · 钔和镄 · 查看更多 »

锎(Californium,--)是一種放射性金屬元素,符號為Cf,原子序為98。鉲屬於錒系元素,是第六種人工合成的超鈾元素。鉲是產量能以肉眼可見的元素中原子量第二高的(最高的是鑀),也是自然界能自行產生的元素中質量数最高的,所有比鉲更重的元素皆必須通過人工合成才能產生。伯克利加州大學於1950年以α粒子(氦-4離子)撞擊鋦,首次人工合成鉲元素,因此該元素是以美國加利福尼亞州及加州大學命名的。 鉲擁有三種晶體結構,分別存在於正常氣壓900 °C以下、正常氣壓900 °C以上與高壓下(48 GPa)。在室溫下,鉲金屬塊會在空氣中緩慢地失去光澤。鉲的化合物主要由能夠形成3個化學鍵的鉲(III)形成。目前已知的20個鉲的同位素中,鉲-251是最為穩定的,其半衰期為898年,而鉲-252是最常被使用的同位素,半衰期約為2.64年,該同位素主要在美國的橡樹嶺國家實驗室及俄羅斯的合成。由於大部分鉲同位素的半衰期都很短,所以地殼中不存在大量的鉲元素。地球大約在45億年前形成,而在地球中自然放射的中子不足以從較穩定的元素產生出大量的鉲。 鉲是少數具有實際用途的超鈾元素之一,利用某些鉲同位素是強中子射源的特性,鉲能夠用於啟動核反應爐,還可以使用在中子衍射技術和中對材料進行研究。另外,鉲可用来合成质量数更高的元素,例如以鈣-48離子撞擊鉲-249可合成第118號元素Og。但在處理鉲的時候,也因此必須考慮到放射性的問題。當鉲累積在動物的骨骼組織時,將破壞紅血球的形成,影响造血功能。.

超铀元素和锎 · 锎和镄 · 查看更多 »

锫(--;Berkelium)是一種放射性化學元素,符號為Bk,原子序為97,屬於錒系元素和超鈾元素。位於美國加州伯克利的勞倫斯伯克利國家實驗室在1949年12月發現錇元素,因此錇以伯克利(Berkeley)命名。錇是繼鎿、鈈、鋦和鎇後第五個被發現的超鈾元素。 最常見的錇同位素是錇-249,主要經高通量核反應爐產生。目前製造該同位素的有美國田納西州的橡樹嶺國家實驗室和俄羅斯季米特洛夫格勒的核反應器研究所。第二重要的同位素錇-247要用高能量α粒子向鋦-244進行撞擊而產生。 從1967年至今,在美國生產的錇元素僅僅超過1克。除在科學研究中用來合成更重的超鈾元素和超錒系元素外,錇沒有實際的用途。2009年,在進行250天的輻射後,橡樹嶺國家實驗室製成了22毫克的錇-249,並在其後的90天內對該樣本進行了純化處理。純化後的錇元素同年被送到俄羅斯聯合核研究所,以鈣-48離子向其撞擊150天後,合成了Ts(117號元素)。 錇是一種柔軟的銀白色放射性金屬。錇-249同位素輻射的是低能電子,所以相對安全。不過,其半衰期為330天,衰變後會產生鉲-249,而該同位素會釋放高能量的α粒子,十分危險。這種衰變的現象在研究錇元素及其化合物屬性時尤其重要,因為不斷生成的鉲不但會污染化學樣本,還會釋放輻射,破壞樣本的結構。.

超铀元素和锫 · 锫和镄 · 查看更多 »

锿(Einsteinium,--,舊譯作釾)是一種人工合成元素,符號為Es,原子序為99。鑀是第7個超鈾元素,屬於錒系元素。 鑀是在1952年第一次氫彈爆炸的殘餘物中發現的,並以物理學家阿爾伯特·愛因斯坦命名。其最常見的同位素為鑀-253(半衰期為20.47天),是通過鉲-253的衰變而人工製造的,每年在高能核反應爐中的產量約為1毫克。合成之後,鑀-253要從其他錒系元素及其衰變產物中分離出來,這是個複雜的過程。其他的鑀同位素則在各個實驗室中以較輕元素的離子撞擊錒系元素而合成,但產量少得多。鑀除了用于合成新的元素,主要用于发射X射线。鑀曾在1955年用於首次合成鍆元素,並一共合成了17顆鍆原子。 鑀是一種柔軟的銀白色金屬,具順磁性。其化學屬性符合典型的重錒系元素,容易形成+3氧化態,並特別在固體中也可以形成+2態。鑀-253的高放射性會使它明顯地發光,並會迅速破壞其晶體金屬結構,每克釋放大約1000瓦的熱量。由於鑀-253每天都損失3%的質量,並依次衰變為錇和鉲,因此對鑀的研究十分困難。鑀-252是存留時間最長的鑀同位素(半衰期為471.7天),可以用於研究鑀的物理特性,但生產鑀-252是極為困難的,每次的產量也極少。鑀是最後一種曾在宏觀尺度下以純元素形態被研究過的元素,所用的同位素是常見但半衰期短的鑀-253。和其他的人工合成超鈾元素一樣,鑀是極具放射性的,如果進食了會對健康造成損害。.

超铀元素和锿 · 锿和镄 · 查看更多 »

鋦(Curium)是一種放射性超鈾元素,符號為Cm,原子序為96,屬於錒系元素,以研究放射性的科學家瑪莉·居禮(Marie Curie)和其丈夫皮埃爾·居禮命名。伯克利加州大學的格倫·西奧多·西博格等人在1944年7月首次專門合成鋦元素。發現起初被列為機密,到1945年11月才公佈於世。大部分的鋦是在核反應爐中通過對鈾或鈈進行中子撞擊產生的。每噸用盡的核燃料中含有大約20克鋦。 鋦是一種銀白色的堅硬高密度金屬,熔點和沸點是錒系元素中較高的。鋦在標準溫度和壓力下具順磁性,並在冷卻後變為反鐵磁性;許多鋦化合物也具有磁性的轉變。鋦在化合物中的氧化態通常為+3和+4,而在溶液中主要呈+3態。鋦很容易被氧化,而形成的氧化物是鋦最常見的形態。鋦可以和各種有機化合物形成螢光配合物,但不出現在任何細菌或古菌中。當攝入人體之後,鋦會累積在骨骼、肺部和肝臟中,並可致癌。 鋦的所有已知同位素都具有放射性,並具有較小的臨界質量(維持核連鎖反應所需的最低質量)。這些同位素主要放射α粒子,輻射釋放的熱量可以在放射性同位素熱電機中用來產生電力。然而由於量的稀少,以及製造費用的昂貴,鋦難以用來發電。鋦被用於製造更重的錒系元素,及在心律調節器中作為能源的238Pu放射性同位素。它也作為α粒子射源,被用在α粒子X射線光譜儀中。許多火星探測任務都使用該光譜儀來分析火星表面岩石的結構和成份,羅塞塔號的菲萊登陸器(Philae Lander)也用它來探測楚留莫夫-格拉希門克彗星的表面。.

超铀元素和锔 · 锔和镄 · 查看更多 »

核试验

核試驗(nuclear test),又稱核試爆,是为了军事研究和科学研究目的,對核爆炸装置或核子武器在预定条件下作出實際的爆破試驗。不少國家在20世紀均發展出核武並試驗,有關部門可透過這些試驗去瞭解這些武器如何運作。其主要目的是:鉴定核爆炸装置的威力及其他性能,验证理论计算和结构设计是否合理,为改进核武器设计或定型生产提供依据;在核爆炸环境下研究核爆炸现象学和各种杀伤破坏因素的变化规律;研究核爆炸的和平利用等。它是一项规模很大、需要多学科、多部门协同配合和耗费大量人力、物力的科学试验。然而在歷史上大部分的核試驗中,多半帶有政治上威嚇的意味。.

核试验和超铀元素 · 核试验和镄 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

放射性和超铀元素 · 放射性和镄 · 查看更多 »

上面的列表回答下列问题

超铀元素和镄之间的比较

超铀元素有55个关系,而镄有49个。由于它们的共同之处12,杰卡德指数为11.54% = 12 / (55 + 49)。

参考

本文介绍超铀元素和镄之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »