徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

超光速和量子纏結

快捷方式: 差异相似杰卡德相似系数参考

超光速和量子纏結之间的区别

超光速 vs. 量子纏結

超光速(Faster-Than-Light, FTL或稱Superluminal)是一種速度比光速還快的概念,源自於相對論中對於定域物體不可能超過真空中光速的推論限制,光速成為許多場合下速率的上限值。在此之前的牛頓力學並未對超光速的速度作出限制。而在相对论中,运动速度和物体的其它性质,如质量甚至它所在参考系的时间流易等,密切相关,速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大因而需要无穷大的能量,而且它所感受到的时间流甚至会停止(如果超过光速则可能会出现“时间倒流”),所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它在真空中永远处于光速c,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些疑似超光速的物理现象特别感兴趣。 相對論出現後,超光速的意义出現在兩個領域,一個是物理上的(包括理論物理和實驗物理)以及天文學觀測方面,另一個是科幻方面,將相關條目條列如下:. 在量子力學裏,當幾個粒子在彼此相互作用後,由於各個粒子所擁有的特性已綜合成為整體性質,無法單獨描述各個粒子的性質,只能描述整體系統的性質,則稱這現象為量子--或量子--(quantum entanglement)。量子糾纏是一種純粹發生於量子系統的現象;在經典力學裏,找不到類似的現象。 假若對於兩個相互糾纏的粒子分別測量其物理性質,像位置、動量、自旋、偏振等,則會發現量子關聯現象。例如,假設一個零自旋粒子衰變為兩個以相反方向移動分離的粒子。沿著某特定方向,對於其中一個粒子測量自旋,假若得到結果為上旋,則另外一個粒子的自旋必定為下旋,假若得到結果為下旋,則另外一個粒子的自旋必定為上旋;更特別地是,假設沿著兩個不同方向分別測量兩個粒子的自旋,則會發現結果違反貝爾不等式;除此以外,還會出現貌似佯谬般的現象:當對其中一個粒子做測量,另外一個粒子似乎知道測量動作的發生與結果,儘管尚未發現任何傳遞信息的機制,儘管兩個粒子相隔甚遠。 阿爾伯特·愛因斯坦、鮑里斯·波多爾斯基和納森·羅森於1935年發表的爱因斯坦-波多尔斯基-罗森佯谬(EPR佯谬)論述到上述現象。埃爾溫·薛丁格稍後也發表了幾篇關於量子糾纏的論文,並且給出了「量子糾纏」這術語。愛因斯坦認為這種行為違背了定域實在論,稱之為「鬼魅般的超距作用」,他總結,量子力學的標準表述不具完備性。然而,多年來完成的多個實驗證實量子力學的反直覺預言正確無誤,還檢試出定域實在論不可能正確。甚至當對於兩個粒子分別做測量的時間間隔,比光波傳播於兩個測量位置所需的時間間隔還短暫之時,這現象依然發生,也就是說,量子糾纏的作用速度比光速還快。最近完成的一項實驗顯示,量子糾纏的作用速度至少比光速快10,000倍。這還只是速度下限。根據量子理論,測量的效應具有瞬時性質。可是,這效應不能被用來以超光速傳輸經典信息,否則會違反因果律。 量子糾纏是很熱門的研究領域。像光子、電子一類的微觀粒子,或者像分子、巴克明斯特富勒烯、甚至像小鑽石一類的介觀粒子,都可以觀察到量子糾纏現象。現今,研究焦點已轉至應用性階段,即在通訊、計算機領域的用途,然而,物理學者仍舊不清楚量子糾纏的基礎機制。.

之间超光速和量子纏結相似

超光速和量子纏結有(在联盟百科)9共同点: 廣義相對論光子真空狭义相对论相对论量子力学量子測量速率虫洞

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和超光速 · 廣義相對論和量子纏結 · 查看更多 »

光子

| mean_lifetime.

光子和超光速 · 光子和量子纏結 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

真空和超光速 · 真空和量子纏結 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

狭义相对论和超光速 · 狭义相对论和量子纏結 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

相对论和超光速 · 相对论和量子纏結 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

超光速和量子力学 · 量子力学和量子纏結 · 查看更多 »

量子測量

在量子力學之中,所謂的「測量」需要有較嚴謹的定義,而特別稱之為量子測量。量子测量不同于一般经典力学中的测量,量子测量会对被测量子系统产生影响,比如改变被测量子系统的状态;处于相同状态的量子系统被测量后可能得到完全不同的结果,这些结果符合一定的概率分布。量子测量是量子力学解释体系的核心问题,而量子力学的解释目前还没有统一的结论。.

超光速和量子測量 · 量子測量和量子纏結 · 查看更多 »

速率

速率(Speed)是物理学中的一个基本概念,是指物体在一定时间内经过的路程,用来表示物体运动的快慢程度。 在日常生活中,速率常常和速度混用,但两者在物理学中对应着不同的概念。速率是一个标量,只有大小,没有方向。它的量纲是长度除以时间。速度的量纲和速率相同,但速度是有方向的向量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。在日常生活中,也用“速度”这个词表示速率的意思。 国际单位制中,速率的單位為米每秒(m/s),但日常生活中較常用的單位是千米每小時(km/h)或是英制系統下的英里每小時(mph)。海上船只或物体的行進速率,一般會使用節作為單位。 依照狭义相对论,能量或信息所能傳遞的最快速率為真空中的光速c.

超光速和速率 · 速率和量子纏結 · 查看更多 »

虫洞

蟲洞(wormhole),又稱愛因斯坦-羅森橋(Einstein—Rosen bridge),是宇宙中可能存在的连接两个不同时空的狭窄隧道。蟲洞是1916年奥地利物理学家路德维希·弗莱姆首次提出的概念,1930年代由爱因斯坦及納森·羅森在研究引力场方程时假设黑洞与白洞透过虫洞连接,认为透过虫洞可以做瞬时间的空间转移或者做时间旅行。迄今为止,科学家们还没有观察到虫洞存在的证据,一般认为这是由于很难和黑洞相区别。 為了與其他種類的蟲洞進行區分,例如量子態的量子虫洞及弦論上的虫洞,一般通俗所稱之「虫洞」應被稱為「時空洞」,量子態的量子虫洞一般被稱為「微型虫洞」,兩者有很大的區分。 黑洞有一個特性,就是會在另一邊得到所謂的「鏡射宇宙」。愛因斯坦並不重視這個解,因為我們根本不可能通行。於是連接兩個宇宙的「愛因斯坦—羅森橋」被認為只是個數學伎倆。 但是,在1963年時,紐西蘭的數學家羅伊·克爾的研究發現,假設任何崩潰的恆星都會旋轉,則形成黑洞時,將會成為動態黑洞;史瓦西的靜態黑洞並不是最佳的物理解法。然而,實際上恆星會變成扁平的結構,不會形成奇點。也就是說:重力場並非無限大。這使得我們得到了一個驚人的結論:如果我們將物體或太空船沿著旋轉黑洞的旋轉軸心發射進入,原則上,它可能可以熬過中心的重力場,並進入鏡射宇宙。如此一來,愛因斯坦—羅森橋就如同連接時空兩個區域的通道,也就是「蟲洞」。 理论上,虫洞是连结白洞和黑洞的多维空间隧道,是无处不在,但转瞬即逝的。不过有人假想一种奇异物质可以使虫洞保持张开。也有人假设如果存在一种叫做幻影物质(Phantom matter)的奇异物质的话,因为其同时具有负能量和负质量,因此能创造排斥效应以防止虫洞关闭。这种奇异物质会使光发生偏转,成为发现虫洞的訊号。但是这些理论存在过多未经测试的假设,很难令人信服。.

虫洞和超光速 · 虫洞和量子纏結 · 查看更多 »

上面的列表回答下列问题

超光速和量子纏結之间的比较

超光速有50个关系,而量子纏結有104个。由于它们的共同之处9,杰卡德指数为5.84% = 9 / (50 + 104)。

参考

本文介绍超光速和量子纏結之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »