我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

行星定義和金屬量

快捷方式: 差异相似杰卡德相似系数参考

行星定義和金屬量之间的区别

行星定義 vs. 金屬量

行星定義直到2006年8月24日才有了一個比較明確且可以被接受的文字敘述。在這之前,尽管行星一詞已經被使用了數千年,但令人驚訝的是,科學界始終沒有給過行星明確的定義。進入21世紀後,行星的認定成為一個備受爭議的主題,這才迫使天文學界不得不為行星做出定義。 數千年來,「行星」一詞只被用在太陽系內。當時天文學家尚未在太陽系以外發現任何行星。但從1992年起,人類陸續發現了許多比海王星更遙遠的小天體,而且其中也不乏與冥王星大小相當者,這使得有資格成為行星的天體由原有的9顆增加至數打之多。1995年,科學家发现了第一个太阳系外行星飛馬座51b。之後,陸續發現的太阳系外行星已經有數百顆之多。這些新發現不僅增加了潛在行星的數量,且由於這些行星具有迥異的性質──有些大小足以成為恒星,有些又比我們的月球還小──使得長久以來模糊不清的行星概念,越来越有明確定義的必要性。 2005年,一顆外海王星天體,阋神星(當時編號為2003 UB313)的發現,使得對行星做明確定義的必要性升至頂點,因為它的質量比冥王星(在當時是已被定義為行星的天體中最小者)還要大。國際天文學聯合會(IAU),由各國的天文學家組成負責為天體命名與分類的組織,在2006年對此問題做出了回應,發佈了行星的定義。依據這最新的定義,行星是環繞太陽(恆星)運行的天體,它們有足夠大的質量使自身因為重力而成為圓球體,並且能清除鄰近的小天體。未能清除軌道內小天體的則被納入一個新創的分類,稱做矮行星。除了以上兩類,其他圍繞太陽運行的天體則被稱為「太陽系小天體」。 按照以上定義,太陽系有八個行星:水星、金星、地球、火星、木星、土星、天王星和海王星,而冥王星被排除在外。至2007年7月為止,已獲承認的矮行星則有冥王星、穀神星和鬩神星,2008年7月才增加了第四顆鳥神星,又於同年9月增加了第五顆妊神星。但國際天文學聯合會的這項決議並無法弭平所有爭議,部分天文學家拒絕承認此一決議。. 金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

之间行星定義和金屬量相似

行星定義和金屬量有(在联盟百科)5共同点: 天文學地球行星

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

天文學和行星定義 · 天文學和金屬量 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

地球和行星定義 · 地球和金屬量 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

行星和行星定義 · 行星和金屬量 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

氢和行星定義 · 氢和金屬量 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

氦和行星定義 · 氦和金屬量 · 查看更多 »

上面的列表回答下列问题

行星定義和金屬量之间的比较

行星定義有130个关系,而金屬量有60个。由于它们的共同之处5,杰卡德指数为2.63% = 5 / (130 + 60)。

参考

本文介绍行星定義和金屬量之间的关系。要访问该信息提取每篇文章,请访问: