舊量子論和通約性
快捷方式: 差异,相似,杰卡德相似系数,参考。
舊量子論和通約性之间的区别
舊量子論 vs. 通約性
舊量子論是一些比現代量子力學還早期,出現於1900年至1925年之間的量子理論。雖然並不很完整或一致,這些啟發式理論是對於經典力學所做的最初始的量子修正。舊量子論最亮麗輝煌的貢獻無疑應屬波耳模型。自從夫朗和斐於1814年發現了太陽光譜的譜線之後,經過近百年的努力,物理學家仍舊無法找到一個合理的解釋。而波耳的模型居然能以簡單的算術公式,準確地計算出氫原子的譜線。這驚人的結果給予了科學家無比的鼓勵和振奮,他們的確是朝著正確的方向前進。很多年輕有為的物理學家,都開始研究量子方面的物理。因為,可以得到很多珍貴的結果。 直到今天,舊量子論仍舊有聲有色地存在著。它已經轉變成一種半古典近似方法,稱為WKB近似。許多物理學家時常會使用WKB近似來解析一些極困難的量子問題。在1970年代和1980年代,物理學家Martin Gutzwiller發現了怎樣半經典地解析混沌理論之後,這研究領域又變得非常熱門。(參閱量子混沌理論 (quantum chaos))。. 假若,兩個不等於零的实数 a\,\! 與 b\,\! 的除商 \frac\,\! 是一個有理數,或者說,a 與 b 的比例相等於兩個非零整數 p 與 q 的比例: 則稱它們是互相可通約的(commensurable),而這特性則稱為通約性。這意味著,存在一個非零的實數公測數 (common measure) m \ (m \in R),使得 所以 或是 其中 \frac \in Q,所以 \frac \in Q。 反之,如果該二數的除商是一個無理數,則稱它們是不可通約的(incommensurable),亦即,a 與 b 之間不存在一個公測數 m \ (m \in R, m \neq 0) 使得.
之间舊量子論和通約性相似
舊量子論和通約性有(在联盟百科)2共同点: 週期,整数。
週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.
舊量子論和週期 · 通約性和週期 · 查看更多 »
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
整数和舊量子論 · 整数和通約性 · 查看更多 »
上面的列表回答下列问题
- 什么舊量子論和通約性的共同点。
- 什么是舊量子論和通約性之间的相似性
舊量子論和通約性之间的比较
舊量子論有87个关系,而通約性有28个。由于它们的共同之处2,杰卡德指数为1.74% = 2 / (87 + 28)。
参考
本文介绍舊量子論和通約性之间的关系。要访问该信息提取每篇文章,请访问: