之间自然单位制和高斯單位制相似
自然单位制和高斯單位制有(在联盟百科)13共同点: 厘米-克-秒制,库仑定律,弦理論,光速,国际单位制,粒子物理學,真空电容率,馬克士威方程組,计量单位,電荷,毕奥-萨伐尔定律,洛伦兹-亥维赛单位制,普朗克單位制。
厘米-克-秒制
厘米-克-秒單位制或厘米-克-秒系統(英文:centimetre-gram-second system,故常簡稱CGS制)是一種物理單位的系統制度,分別以厘米、克及秒為長度、質量及時間的基本單位。 在力學單位方面厘米-克-秒單位制是一致的,但在電學單位方面則有幾種變體。此單位系統後來被MKS--取代,也就是米-千克-秒系統(meter-kilogram-second system),而其又被國際單位制(SI system)所取代;國際單位制具有MKS制的三個基本單位,再加上凱氏溫標、安培、燭光及莫耳,有許多工程及科學領域只使用國際單位制,不過仍有一些領域常使用厘米-克-秒單位制。 在量測純力學系統時(即只和長度、質量、力、壓力、能量等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換相當單純及明確。單位間的轉換係數均為10的次幂,均可由以下關係推導而成;100 cm.
厘米-克-秒制和自然单位制 · 厘米-克-秒制和高斯單位制 ·
库仑定律
库仑定律(Coulomb's law),法国物理学家查尔斯·库仑於1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。庫侖定律闡明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。.
库仑定律和自然单位制 · 库仑定律和高斯單位制 ·
弦理論
弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.
光速
光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.
国际单位制
國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.
粒子物理學
粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.
真空电容率
真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.
馬克士威方程組
克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.
自然单位制和馬克士威方程組 · 馬克士威方程組和高斯單位制 ·
计量单位
單位系指給定的某一基礎物理量,單位的給定皆屬人為。常伴隨著某種表示法,例如公尺、秒、公斤等,以方便人們在溝通某一量時有共通的概念。 计量单位(度量單位)为单位的具体统称,为人类计算一个数额的方法。例如,在數字中,单位一般为“1”;在计算长度的时候,单位可以是“纳米”、“毫米”、“-zh-hans:厘米;zh-hant:公分;-(或作--)”、“分米”、“米”、“千米”、“光年”等;在计算时间的时候,单位可以是“微秒”、“秒”、“分钟”、“时”、“日”、“星期”、“月”、“年”、“世纪”等。.
自然单位制和计量单位 · 计量单位和高斯單位制 ·
電荷
在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.
毕奥-萨伐尔定律
在靜磁學裏,必歐-沙伐定律(--)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關。必歐-沙伐定律是以法國物理學者讓-巴蒂斯特·必歐與菲利克斯·沙伐命名。 必歐-沙伐定律表明,假設源位置為\mathbf'的微小線元素\mathrm\boldsymbol'有電流I,則\mathrm\boldsymbol' 作用於場位置\mathbf的磁場為 其中,\mathrm\mathbf是微小磁場(這篇文章簡稱磁通量密度為磁場),\mu_0是磁常數。 已知電流密度\mathbf(\mathbf'),則有: 其中,\mathrm^3'為微小體積元素,\mathbb'是積分的體積。 在空氣動力學中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算渦線 (vortex line)導出的速度。.
毕奥-萨伐尔定律和自然单位制 · 毕奥-萨伐尔定律和高斯單位制 ·
洛伦兹-亥维赛单位制
洛伦兹-亥维赛单位制(或称亥维赛-洛伦兹单位制)是一种衍生自厘米-克-秒制的单位系统,主要用于电磁学领域。其得名于荷兰物理学家亨德里克·洛伦兹与英国数学家奥利弗·亥维赛。与同是衍生自厘米-克-秒制的高斯单位制类似,在使用这种单位制时,电常数及磁常数并不在方程中出现,而是整合于相关的单位中。相对于国际单位制,洛伦兹-亥维赛单位制可以视作调整麦克斯韦方程组,归一与,转而在麦克斯韦方程组中使用光速的结果。 与国际单位制类似,洛伦兹-亥维赛单位制是有理化的,即在方程中不会出现系数。这一点与同是衍生自CGS制的高斯单位制不同。正是由于这一单位制是有理化的,其会特别符合量子场论的需求:在该理论所涉及的拉格朗日量中不会出现系数。同时,电荷、电磁场依据洛伦兹-亥维赛单位制所得到的定义也会由于系数而发生改变。洛伦兹-亥维赛单位制在弦论这样计算所涉及的空间维度大于三的情形中特别适用,并且还常用于狭义相对论计算。.
洛伦兹-亥维赛单位制和自然单位制 · 洛伦兹-亥维赛单位制和高斯單位制 ·
普朗克單位制
普朗克單位制是一種計量單位制度,由德國物理學家馬克斯·普朗克最先提出,因此命名為普朗克單位制。這種單位制是自然單位制的一個實例,經過特別設計,使得某些基礎物理常數的值能夠簡化為1,這些基礎物理常數是.
上面的列表回答下列问题
- 什么自然单位制和高斯單位制的共同点。
- 什么是自然单位制和高斯單位制之间的相似性
自然单位制和高斯單位制之间的比较
自然单位制有59个关系,而高斯單位制有64个。由于它们的共同之处13,杰卡德指数为10.57% = 13 / (59 + 64)。
参考
本文介绍自然单位制和高斯單位制之间的关系。要访问该信息提取每篇文章,请访问: