我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

群和阿贝尔-鲁菲尼定理

快捷方式: 差异相似杰卡德相似系数参考

群和阿贝尔-鲁菲尼定理之间的区别

群 vs. 阿贝尔-鲁菲尼定理

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。. 阿贝尔-鲁菲尼定理是代数学中的重要定理。它指出,五次及更高次的多项式方程没有一般的求根公式,即不是所有这样的方程都能由方程的系数经有限次四则运算和开方运算求根。这个定理以保罗·鲁菲尼和尼尔斯·阿贝尔命名。前者在1799年给出了一个不完整的证明,后者则在1824年给出了完整的证明。埃瓦里斯特·伽罗瓦创造了群论,独立地给出了更广泛地判定多项式方程是否拥有根式解的方法,并给出了定理的证明,但直到他死後的1846年才得以发表。.

之间群和阿贝尔-鲁菲尼定理相似

群和阿贝尔-鲁菲尼定理有(在联盟百科)15共同点: 埃瓦里斯特·伽罗瓦卡爾·弗里德里希·高斯单群可解群多項式尼尔斯·阿贝尔伽罗瓦群分裂域商群约瑟夫·拉格朗日置換群论阿贝尔群正规子群

埃瓦里斯特·伽罗瓦

埃瓦里斯特·伽罗瓦(Évariste Galois,,法語發音:),法国著名的数学家。在他还只有十几岁的时候,他就发现了n次多项式可以用根式解的充要条件,解决了长期困扰数学界的问题。他的工作为伽罗瓦理论(一个抽象代数的主要分支)以及伽罗瓦连接领域的研究奠定了基石。他是第一个使用「群」这一個数学术语来表示一组置换的人。與尼尔斯·阿贝尔並稱為現代群論的創始人。在路易·菲利普复辟的时期,他是一个激进的共和主义者,并因此被逮捕、坐牢。二十岁出狱后,他在一次幾近自殺的決鬥中逝世,引起種種揣測。.

埃瓦里斯特·伽罗瓦和群 · 埃瓦里斯特·伽罗瓦和阿贝尔-鲁菲尼定理 · 查看更多 »

卡爾·弗里德里希·高斯

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.

卡爾·弗里德里希·高斯和群 · 卡爾·弗里德里希·高斯和阿贝尔-鲁菲尼定理 · 查看更多 »

单群

数学上的单群(Simple group)是指没有非平凡正规子群的群。任意一个群如果不是单群,都可以作进一步分解而得到一个非平凡正规子群及对应的商群。这个过程可以一直做下去。对于有限群,若尔当-赫尔德定理表明,这个分解过程可以得到该群的唯一的合成列(最多相差一个置换)。在2008年完成的有限單群分類工作是数学史上一个重要的里程碑。.

单群和群 · 单群和阿贝尔-鲁菲尼定理 · 查看更多 »

可解群

在數學的歷史中,群論原本起源於對五次方程及更高次方程無一般的公式解之證明的找尋,最終随着伽羅瓦理论的提出而确立。可解群的概念產生於描述其根可以只用根式(平方根、立方根等等及其和與積)表示的多項式所对应的自同構群所擁有的性質。 一個群被稱為可解的,若它擁有一個其商群皆為阿貝爾群的正規列。或者等價地說,若其降正規列 之中,每一個子群都會是前一個的导群,且最後一個為G的當然子群。上述兩個定義是等價的,对一個群H及H的正規子群N,其商群H/N為可交換的若且唯若N包含著H(1)。 對於有限群,有一個等價的定義為:一可解群為一有著其商群皆為質數階的循環群之合成列的群。此一定義會等價是因為每一個簡單阿貝爾群都是有質數階的循環群。若爾當-赫爾德定理表示若一個合成列有此性質,則其循環群即會對應到某個體上的n個根。但此一定義的等價性並不必然於無限群中亦會成立:例如,因為每一個在加法下的整數群Z的非當然子群皆同構於Z本身,它不會有合成列,但是其有著唯一同構於Z的商群之正規列,證明了其確實是可解的。 和喬治·波里亞的格言「若有一個你無法算出的問題,則會有的你可以算出的較簡單的問題」相一致的,可解群通常在簡化有關一複雜的群的推測至一系列有著簡單結構-阿貝爾群的群的推測有著很有用的功用。.

可解群和群 · 可解群和阿贝尔-鲁菲尼定理 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

多項式和群 · 多項式和阿贝尔-鲁菲尼定理 · 查看更多 »

尼尔斯·阿贝尔

尼尔斯·亨利克·阿贝尔(Niels Henrik Abel,),挪威數學家,開啟許多領域的研究,以證明懸疑餘兩百五十年五次方程的根式解的不可能性和对椭圆函数的研究中提出阿貝爾方程式而聞名。 生于挪威芬岛附近的 ,就读于奥斯陆大学。1825年得到政府资助,游学柏林和巴黎。儘管阿贝尔成就極高,卻生前不得志,無法獲得教席俾專心研究,最後因過度貧窮染上肺结核逝世於挪威的弗鲁兰。死後兩天,來自柏林的聘書才寄到家中。跟同樣早逝的伽羅華一同被奉為群論的先驅。现代有以他名字命名的阿贝尔奖。 法國數學家夏爾·埃爾米特讚曰:「阿貝爾讓數學家們足夠忙上五百年的。」 ;另一法國數學家阿德里安-馬里·勒讓德曰:「這挪威青年的頭腦實在不簡單啊!.

尼尔斯·阿贝尔和群 · 尼尔斯·阿贝尔和阿贝尔-鲁菲尼定理 · 查看更多 »

伽罗瓦群

伽罗瓦群(Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。 用置换群更初等地讨论伽罗瓦群,参见伽罗瓦理论一文。.

伽罗瓦群和群 · 伽罗瓦群和阿贝尔-鲁菲尼定理 · 查看更多 »

分裂域

在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。.

分裂域和群 · 分裂域和阿贝尔-鲁菲尼定理 · 查看更多 »

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

商群和群 · 商群和阿贝尔-鲁菲尼定理 · 查看更多 »

环可能指:.

环和群 · 环和阿贝尔-鲁菲尼定理 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

约瑟夫·拉格朗日和群 · 约瑟夫·拉格朗日和阿贝尔-鲁菲尼定理 · 查看更多 »

置換

排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.

置換和群 · 置換和阿贝尔-鲁菲尼定理 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

群和群论 · 群论和阿贝尔-鲁菲尼定理 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

群和阿贝尔群 · 阿贝尔-鲁菲尼定理和阿贝尔群 · 查看更多 »

正规子群

在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.

正规子群和群 · 正规子群和阿贝尔-鲁菲尼定理 · 查看更多 »

上面的列表回答下列问题

群和阿贝尔-鲁菲尼定理之间的比较

群有222个关系,而阿贝尔-鲁菲尼定理有44个。由于它们的共同之处15,杰卡德指数为5.64% = 15 / (222 + 44)。

参考

本文介绍群和阿贝尔-鲁菲尼定理之间的关系。要访问该信息提取每篇文章,请访问: