徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

正交补和线性子空间

快捷方式: 差异相似杰卡德相似系数参考

正交补和线性子空间之间的区别

正交补 vs. 线性子空间

在数学领域线性代数和泛函分析中,内积空间 V 的子空间 W 的正交补 W^\bot 是正交于 W 中所有向量的所有 V 中向量的集合,也就是 正交补总是闭合在度量拓扑下。在希尔伯特空间中,W 的正交补的正交补是 W 的闭包,就是说 如果 A 是 m \times n 矩阵,而 \mbox A, A 和 \mbox A 分别指称行空间、列空间和零空间,则有 和. 线性子空间(或向量子空间)在线性代数和相关的数学领域中是重要的。在没有混淆于其他子空间的时候通常简称为“子空间”。.

之间正交补和线性子空间相似

正交补和线性子空间有(在联盟百科)2共同点: 内积空间线性代数

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

内积空间和正交补 · 内积空间和线性子空间 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

正交补和线性代数 · 线性代数和线性子空间 · 查看更多 »

上面的列表回答下列问题

正交补和线性子空间之间的比较

正交补有15个关系,而线性子空间有14个。由于它们的共同之处2,杰卡德指数为6.90% = 2 / (15 + 14)。

参考

本文介绍正交补和线性子空间之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »