之间約翰·惠勒和鈾相似
約翰·惠勒和鈾有(在联盟百科)9共同点: 原子弹,密度,元素周期表,第二次世界大战,美國,核聚变,核裂变,氢弹,曼哈顿计划。
原子弹
原子弹又称裂变弹(Atomic bomb),是一种利用核原理制成的核武器。由美国最先研制成功,具有极强的破坏力,在爆炸的同时会放出强烈的核辐射,危害生物和非生物组织。第一个裂变(原子弹)试爆释放出的能量为约20,000吨TNT(见三位一体核试爆)的相同的当量。第一个热核(氢弹)试爆释放相同的能量为10,000,000吨TNT的当量。.
密度
3 | symbols.
元素周期表
化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.
元素周期表和約翰·惠勒 · 元素周期表和鈾 ·
第二次世界大战
二次世界大戰(又常簡稱二次大戰、二戰、WWII等;World War II;Seconde Guerre mondiale;Zweiter Weltkrieg;Вторая мировая война;第二次世界大戰)是一次自1939年至1945年所爆發的全球性軍事衝突,整場戰爭涉及到全球絕大多數的國家,包括所有的大國,并最終分成了兩個彼此對立的軍事同盟─同盟國和軸心國。這次戰爭是人類歷史上最大規模的戰爭,動員了1億多名軍人參與這次軍事衝突。主要的參戰國紛紛宣布進入總體戰狀態,幾乎將自身國家的全部經濟、工業和科學技術應用於戰爭之上,同時也將民用與軍用的資源合併以方便統籌規劃。包括有猶太人大屠殺、南京大屠殺、戰爭中日軍對中國軍民進行細菌戰、以及最终美國對日本首次使用原子彈等事件,使得第二次世界大戰也是自有紀錄以來涉及最多大規模民眾死亡案例的軍事衝突,全部總計便將近有5,000萬至7,000萬人因而死亡,這也讓第二次世界大戰成了人類歷史上死亡人數最多的戰爭。 儘管早在1931年9月,日本便侵佔了中國的滿洲,而後建立了傀儡國家滿洲國。至1937年7月盧溝橋事變後中日更爆發了全面戰爭。不過大多數人仍多把第二次世界大戰的爆發定為1939年9月1日德國入侵波蘭開始,這次入侵行動隨即導致英國與法國向德國宣戰。然而德國在入侵波蘭後開始著手嘗試在歐洲建立一個大帝國,自1939年末期到1941年初期為止,發動一連串戰爭並藉由條約的簽署使得德國幾乎佔領了歐洲絕大部分的地區,而名義上保持中立的蘇聯在和德國簽訂《德蘇互不侵犯條約》後,也跟進侵略潮流,陸續佔領或者吞併了其在歐洲邊界的鄰近6個國家,在這之中也包括第二次世界大戰爆發時所佔領的波蘭領土。英國以及大英國協的成員國則堅持持續與軸心國繼續作戰,並分別在北非和大西洋海上發生多次軍事衝突,而這也使得英國成了歐洲地區少數仍能繼續反抗德軍入侵的主要武力之一。1941年6月,歐洲的軸心國集團決定撕毀與蘇聯的合作約定,聯合入侵蘇聯領土,這次攻勢也開始了人類歷史上規模最大的地面戰爭爆發,但也在之後讓原本幾乎統轄整個歐洲地區的軸心國被迫投入大量軍力來維持作戰優勢。到了1941年12月,已經加入軸心國的大日本帝國為了能夠在亞洲及太平洋地區獲得領導地位,陸續襲擊位于太平洋的美國統轄地區和座落於與中南半島的歐洲殖民地,很快地於西太平洋和東亞戰區獲得了主導權。 到了1942年時日本開始在一系列的海戰中戰敗,位於歐洲的軸心國也陸續於北非戰役以及斯大林格勒戰役中節節敗退,這些都迫使軸心國停下進攻的腳步。1943年時,義大利法西斯政權在西西里島戰役中面對同盟國部隊嚴重失利,另一方面德軍在库尔斯克会战戰敗後失去對於東歐的領導地位,同時美國也在太平洋戰區中獲得了一連串的勝利,自此軸心國集團逐漸失去主導權並開始嘗試將佈署於各地的前線部隊進行戰略性的撤退。到了1944年時,盟軍決定登陸法國以開闢第二戰場,而蘇聯除了成功收復過去被佔領的領土外,也開始轉往進攻德國與其同盟國家的土地。在蘇聯和波蘭部隊共同攻入柏林後,第二次世界大戰歐洲戰區最終在1945年5月8日德國投降的情況下宣告結束。而另一方面美國在1944年和1945年成功擊敗了日本海軍部隊並陸續佔領了數個重要的西太平洋島嶼,這使得日本列島隨時面臨同盟國部隊入侵的危機。最後在美軍分別於廣島市和長崎市投下原子彈並造成大量日本平民死亡。1945年8月8日蘇聯進攻日本控制下的中國東北地區,8月14日日本跟進宣佈願意接受無條件投降的條件,而隨著亞洲戰事的停息也意味著第二次世界大戰正式結束。 1945年時第二次世界大戰以同盟國勝利宣告結束,然而二次大戰對世界影響極為深遠,改變了往後世界的政治版圖和社會結構,特別是戰敗的軸心國集團被迫接受同盟國的安排。1945年10月24日聯合國亦宣告成立,期望能夠促進各國合作並防止未來的軍事衝突;同時戰勝的盟軍各國,也紛紛在聯合國各個機構中擔任重要職位,特別是以美國、蘇聯、中國、英國和法國5個國家為首成立聯合國聯合國安全理事會的常任理事國,主導著世界的秩序.
美國
#重定向 美国.
核聚变
--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.
核裂变
核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.
氢弹
氢弹,又称热核武器,屬於核武器的一种。主要利用氢的同位素(氘、氚)的核融合反应所释放的能量来进行杀伤破坏,属于威力强大的大规模杀伤性武器。聯合國安全理事會五大常任理事國(美、俄、中、英、法)合法擁有熱核武器,2017年9月朝鲜民主主义人民共和国公開測試氢弹技术。.
曼哈顿计划
曼哈顿计划(Manhattan Project)是第二次世界大戰期間研發與製造原子彈的一項大型軍事工程,由美國以及給予相關支援的英國與加拿大執行,該計划於1942年到1946年間直屬於美國陸軍工程兵團的莱斯利·理查德·格罗夫斯將軍領導,工程原名為「代用材料項目發展」(Development of Substitute Materials),後改為「曼哈頓工程區」(Manhattan District)。期間,美方也吸收了較早展開的英國核武器研發計畫——「合金管工程」之成果。曼哈顿计划早在1939年即秘密地展開,雇佣了超过13萬人员,花费了将近20億美金(相當於2014年260億美金),超过90%的費用用于建造工厂和制造核裂变的原材料,用于制造和发展武器的部份僅佔不到10%,此一工程在橫跨美國、英國和加拿大三國的30多個城市中均有進行。 戰爭期間,美軍研發出兩種類型的原子彈,一為設計上較簡單、使用鈾235製成的「」,由於鈾235在天然鈾中僅佔0.7%,其他絕大部分都是質量相同、難以分離的同位素鈾238,故美方以三種分離方式來提高其鈾-235的濃度——電磁(「」)、氣體(「氣體擴散法」)與熱(「索瑞特效應」),大部分工作都在田纳西州橡树岭一地進行。 1941年12月7日,日本偷袭美国珍珠港,美国对日宣战,自此开始,美国正式卷入二战。此时,纳粹德国已经开始了德國核武器開發計畫「铀计划」(Uranprojekt),目的是制造出核武器,运用在二战之中。一些美国科学家提出,要在纳粹德国之前研发出原子弹。 1942年12月2日,在费米的指导下,世界上第一个实验性原子反应堆在芝加哥建成,成功实现了可控的链式反应。1943年春,奥本海默领导科研人员开始制造原子弹的工作;翌年,美国橡树岭工厂生产出第一批浓缩铀原材料;1945年7月12日,第一颗实验性原子弹开始最后的装配。7月16日,美国的第一颗原子弹在新墨西哥州的沙漠中试爆成功,爆炸当量大约21,000吨TNT炸弹。8月6日,美国向广岛投放名为小男孩的原子弹;3日后(8月9日),向长崎投擲名为胖子的原子弹。8月15日,日本宣告无条件投降,第二次世界大战结束。.
曼哈顿计划和約翰·惠勒 · 曼哈顿计划和鈾 ·
上面的列表回答下列问题
- 什么約翰·惠勒和鈾的共同点。
- 什么是約翰·惠勒和鈾之间的相似性
約翰·惠勒和鈾之间的比较
約翰·惠勒有96个关系,而鈾有234个。由于它们的共同之处9,杰卡德指数为2.73% = 9 / (96 + 234)。
参考
本文介绍約翰·惠勒和鈾之间的关系。要访问该信息提取每篇文章,请访问: