之间算法和计算理论相似
算法和计算理论有(在联盟百科)12共同点: 可判定性,可计算性理论,库尔特·哥德尔,图灵机,計算複雜性理論,计算机科学,阿隆佐·邱奇,邱奇-图灵论题,艾伦·图灵,電子計算機,斯蒂芬·科尔·克莱尼,数学。
可判定性
没有描述。
可计算性理论
在计算机科学中,可计算性理论(Computability theory)作为计算理论的一个分支,研究在不同的计算模型下哪些算法问题能够被解决。相对应的,计算理论的另一块主要内容,计算复杂性理论考虑一个问题怎样才能被有效的解决。.
可计算性理论和算法 · 可计算性理论和计算理论 ·
库尔特·哥德尔
库尔特·弗雷德里希·哥德尔(Kurt Friedrich Gödel,),出生於奧匈帝國的數學家、邏輯學家和哲學家,维也纳学派(维也纳小组)的成员。其最杰出的贡献是哥德尔不完备定理和连续统假设的相对协调性证明。.
图灵机
图灵机(),又称确定型图灵机,是英国数学家艾倫·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。.
計算複雜性理論
计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。 如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。 在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。.
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
算法和计算机科学 · 计算机科学和计算理论 ·
阿隆佐·邱奇
阿隆佐·邱奇(Alonzo Church,)是美国数学家,1936年发表可计算函数的第一份精确定义,对算法理论的系统发展做出巨大贡献。邱奇在普林斯顿大学受教并工作四十年,曾任数学与哲学教授。1967年迁往加利福尼亚大学洛杉矶分校。 解决算法问题包括构造一个能解决某一指定集及其他相关集的算法,如果该算法无法构建,则表明该问题是不可解的。证明此种问题不可解性的定理是算法理论中的一大突破,邱奇的算法即为该类算法的首例。邱奇证明了基本几何问题的算法不可解性。同时证明了一阶逻辑中真命题全集的解法问题是不可解的。.
算法和阿隆佐·邱奇 · 计算理论和阿隆佐·邱奇 ·
邱奇-图灵论题
邱奇-图灵论题(Church–Turing thesis,又称邱奇-图灵猜想,邱奇论题,邱奇猜想,图灵论题)是一个关于可计算性理论的假设。该假设论述了关于函数特性的,可有效计算的函数值(用更现代的表述来说--在算法上可计算的)。简单来说,邱奇-图灵论题认为“任何在算法上可计算的问题同样可由图灵机计算”。 20世纪上半叶,对可计算性进行公式化表示的尝试有:.
艾伦·图灵
艾伦·麦席森·图灵,OBE,FRS(Alan Mathison Turing,又译阿兰·图灵,Turing也常翻譯成--林或者杜林,)是英国計算機科學家、数学家、邏輯學家、密码分析学家和理论生物学家,他被视为计算机科学與人工智慧之父。 在第二次世界大战期间,图灵曾在“政府密码学校”(GC&CS,今政府通信总部)工作。政府密码学校位于布萊切利園,是英国顶级机密情报机构。图灵在这里从事密码破译工作,有一段时间,他领导了(Hut 8)小组,负责德国海军密码分析。 期间他设计了一些加速破译德国密码的技术,包括改进波兰战前研制的机器,一种可以找到恩尼格玛密码机设置的机电机器。 图灵在破译截获的编码信息方面发挥了关键作用,使盟军能够在包括大西洋战役在内的许多重要交战中击败纳粹,并因此帮助赢得了战争。 图灵对于人工智能的发展有诸多贡献,例如图灵曾写过一篇名为《》的论文,提問「机器会思考吗?」(Can Machines Think?),作為一种用于判定机器是否具有智能的测试方法,即图灵测试。至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。 图灵是著名的男同性恋者,并因为其性倾向而遭到当时的英国政府迫害,职业生涯尽毁。他亦患有花粉过敏症。 图灵还是一位世界级的长跑运动员。他的马拉松最好成绩是2小時46分03秒(手動計時),比1948年奥林匹克运动会金牌成绩慢11分钟。1948年的一次跨国赛跑比赛中,他跑赢了同年奥运会银牌得主。.
算法和艾伦·图灵 · 艾伦·图灵和计算理论 ·
電子計算機
--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.
算法和電子計算機 · 计算理论和電子計算機 ·
斯蒂芬·科尔·克莱尼
斯蒂芬·科尔·克莱尼(Stephen Cole Kleene,)美國數學家、逻辑學家,主要从事對可計算函數的研究,而他的遞歸理論研究有助於奠定理論電腦科學的基礎。他為數學直覺主義的基礎做出了重要貢獻,克莱尼層次結構、克莱尼代数、克莱尼星号(克莱尼閉包)、克莱尼遞歸定理和克莱尼不動點定理數學概念以他的名字命名。他也是正規表示法的發明者。.
斯蒂芬·科尔·克莱尼和算法 · 斯蒂芬·科尔·克莱尼和计算理论 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么算法和计算理论的共同点。
- 什么是算法和计算理论之间的相似性
算法和计算理论之间的比较
算法有88个关系,而计算理论有21个。由于它们的共同之处12,杰卡德指数为11.01% = 12 / (88 + 21)。
参考
本文介绍算法和计算理论之间的关系。要访问该信息提取每篇文章,请访问: