之间算术和算法相似
算术和算法有(在联盟百科)6共同点: 平方根,四则运算,素数,计算机科学,電子計算機,数学。
平方根
在數學中,一個數x的平方根y指的是滿足y^2.
四则运算
四则运算,即加减乘除,是數學最基本的算術运算。如果加減乘除放在同一個算式列中的話,其計算的順序是「先乘除,後加減」,括號先算。四則運算的起源很早,幾乎在數學產生時就有了。.
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
電子計算機
--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么算术和算法的共同点。
- 什么是算术和算法之间的相似性
算术和算法之间的比较
算术有98个关系,而算法有88个。由于它们的共同之处6,杰卡德指数为3.23% = 6 / (98 + 88)。
参考
本文介绍算术和算法之间的关系。要访问该信息提取每篇文章,请访问: