之间简单类型λ演算和类型论相似
简单类型λ演算和类型论有(在联盟百科)5共同点: 系统F,组合子逻辑,逻辑框架,构造演算,有类型λ演算。
系统F
系统F,也叫做多态lambda演算或二阶lambda演算,是有类型lambda演算。它由逻辑学家Jean-Yves Girard和计算机科学家John C. Reynolds独立发现的。系统F形式化了编程语言中的参数多态的概念。 正如同lambda演算有取值于(rang over)函数的变量,和来自它们的粘合子(binder);二阶lambda演算取值自类型,和来自它们的粘合子。 作为一个例子,恒等函数有形如A→ A的任何类型的事实可以在系统F中被形式化为判断 这里的α是类型变量。 在Curry-Howard同构下,系统F对应于二阶逻辑。 系统F,和甚至更加有表达力的lambda演算一起,可被看作Lambda立方体的一部分。.
简单类型λ演算和系统F · 类型论和系统F ·
组合子逻辑
组合子逻辑是Moses Schönfinkel和哈斯凱爾·加里介入的一种符号系统,用来消除数理逻辑中对变量的需要。它最近在计算机科学中被用做计算的理论模型和设计函数式编程语言的基础。它所基于的组合子是只使用函数应用或早先定义的组合子来定义从它们的参数得出的结果的高阶函数。.
逻辑框架
在类型论中,LF 逻辑框架提供了定义(或表示)逻辑的一种方式。它基于了通过有依赖类型的lambda 演算方式的对语法、规则和证明的一般性处理。语法按类似于但更一般性的 Per Martin-Löf 文章中的系统的风格来处理。 要描述一个逻辑框架,你必须提供如下: 1.
简单类型λ演算和逻辑框架 · 类型论和逻辑框架 ·
构造演算
构造演算(CoC)是高阶有类型 lambda 演算,这里的类型是一级值。因此在 CoC 内有可能定义从整数到类型、从类型到类型的函数,同从整数到整数的函数一样。CoC 是强规范化的。 CoC 最初由 Thierry Coquand 开发。 CoC 是 Coq 定理证明器早期版本的基础;它后来的版本建造在归纳构造演算之上,这是带有对归纳数据类型的天然支持的 CoC 扩展。在最初的 CoC 中,归纳数据类型必须模拟为它们的多态解构函数。.
构造演算和简单类型λ演算 · 构造演算和类型论 ·
有类型λ演算
有类型 lambda 演算是使用 lambda 符号(\lambda)指示匿名函数抽象的一种有类型的形式化。有类型 lambda 演算是基础编程语言并且是有类型的函数式编程语言如 ML 和 Haskell 和更间接的指令式编程语言的基础。它们通过 Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴的类的内部语言,比如简单类型 lambda 演算是笛卡尔闭范畴(CCC)的语言。 传统上,有类型 lambda 演算被看作无类型lambda演算的精细化。更现代的观点把有类型 lambda 演算看做更基础的理论,而把无类型 lambda 演算看作它的只有一个类型的特殊情况。.
上面的列表回答下列问题
- 什么简单类型λ演算和类型论的共同点。
- 什么是简单类型λ演算和类型论之间的相似性
简单类型λ演算和类型论之间的比较
简单类型λ演算有18个关系,而类型论有27个。由于它们的共同之处5,杰卡德指数为11.11% = 5 / (18 + 27)。
参考
本文介绍简单类型λ演算和类型论之间的关系。要访问该信息提取每篇文章,请访问: