我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

简单类型λ演算和类型论

快捷方式: 差异相似杰卡德相似系数参考

简单类型λ演算和类型论之间的区别

简单类型λ演算 vs. 类型论

单类型 lambda 演算(\lambda^\to)是连接词只有 \to (函数类型)的有类型 lambda 演算。这使它成为规范的、在很多方面是最简单的有类型 lambda 演算的例子。 简单类型也被用来称呼对简单类型 lambda 演算的扩展比如积、陪积或自然数(系统 T)甚至完全的递归(如PCF)。相反的,介入了多态类型(如系统F)或依赖类型(如逻辑框架)的系统不被当作是简单类型。简单类型 lambda 演算最初由阿隆佐·邱奇在 1940 年介入来尝试避免无类型 lambda 演算的悖论性使用。. 在最广泛的层面上,类型论是关注把实体分类到叫做类型的搜集中的数学和逻辑分支。在这种意义上,它与类型的形而上学概念有关。现代类型论在部分上是响应罗素悖论而发明的,并在伯特兰·罗素和阿弗烈·诺夫·怀海德的《数学原理》中起到重要作用。 在计算机科学分支中的编程语言理论中,类型论提供了设计分析和研究类型系统的形式基础。实际上,很多计算机科学家使用术语“类型论”来称呼对编程语言的类型语言的形式研究,尽管有些人把它限制于对更加抽象的形式化如有类型lambda演算的研究。.

之间简单类型λ演算和类型论相似

简单类型λ演算和类型论有(在联盟百科)5共同点: 系统F组合子逻辑逻辑框架构造演算有类型λ演算

系统F

系统F,也叫做多态lambda演算或二阶lambda演算,是有类型lambda演算。它由逻辑学家Jean-Yves Girard和计算机科学家John C. Reynolds独立发现的。系统F形式化了编程语言中的参数多态的概念。 正如同lambda演算有取值于(rang over)函数的变量,和来自它们的粘合子(binder);二阶lambda演算取值自类型,和来自它们的粘合子。 作为一个例子,恒等函数有形如A→ A的任何类型的事实可以在系统F中被形式化为判断 这里的α是类型变量。 在Curry-Howard同构下,系统F对应于二阶逻辑。 系统F,和甚至更加有表达力的lambda演算一起,可被看作Lambda立方体的一部分。.

简单类型λ演算和系统F · 类型论和系统F · 查看更多 »

组合子逻辑

组合子逻辑是Moses Schönfinkel和哈斯凱爾·加里介入的一种符号系统,用来消除数理逻辑中对变量的需要。它最近在计算机科学中被用做计算的理论模型和设计函数式编程语言的基础。它所基于的组合子是只使用函数应用或早先定义的组合子来定义从它们的参数得出的结果的高阶函数。.

简单类型λ演算和组合子逻辑 · 类型论和组合子逻辑 · 查看更多 »

逻辑框架

在类型论中,LF 逻辑框架提供了定义(或表示)逻辑的一种方式。它基于了通过有依赖类型的lambda 演算方式的对语法、规则和证明的一般性处理。语法按类似于但更一般性的 Per Martin-Löf 文章中的系统的风格来处理。 要描述一个逻辑框架,你必须提供如下: 1.

简单类型λ演算和逻辑框架 · 类型论和逻辑框架 · 查看更多 »

构造演算

构造演算(CoC)是高阶有类型 lambda 演算,这里的类型是一级值。因此在 CoC 内有可能定义从整数到类型、从类型到类型的函数,同从整数到整数的函数一样。CoC 是强规范化的。 CoC 最初由 Thierry Coquand 开发。 CoC 是 Coq 定理证明器早期版本的基础;它后来的版本建造在归纳构造演算之上,这是带有对归纳数据类型的天然支持的 CoC 扩展。在最初的 CoC 中,归纳数据类型必须模拟为它们的多态解构函数。.

构造演算和简单类型λ演算 · 构造演算和类型论 · 查看更多 »

有类型λ演算

有类型 lambda 演算是使用 lambda 符号(\lambda)指示匿名函数抽象的一种有类型的形式化。有类型 lambda 演算是基础编程语言并且是有类型的函数式编程语言如 ML 和 Haskell 和更间接的指令式编程语言的基础。它们通过 Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴的类的内部语言,比如简单类型 lambda 演算是笛卡尔闭范畴(CCC)的语言。 传统上,有类型 lambda 演算被看作无类型lambda演算的精细化。更现代的观点把有类型 lambda 演算看做更基础的理论,而把无类型 lambda 演算看作它的只有一个类型的特殊情况。.

有类型λ演算和简单类型λ演算 · 有类型λ演算和类型论 · 查看更多 »

上面的列表回答下列问题

简单类型λ演算和类型论之间的比较

简单类型λ演算有18个关系,而类型论有27个。由于它们的共同之处5,杰卡德指数为11.11% = 5 / (18 + 27)。

参考

本文介绍简单类型λ演算和类型论之间的关系。要访问该信息提取每篇文章,请访问: