我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

科学和线性代数

快捷方式: 差异相似杰卡德相似系数参考

科学和线性代数之间的区别

科学 vs. 线性代数

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。. 线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

之间科学和线性代数相似

科学和线性代数有(在联盟百科)8共同点: 大地测量学社会科学统计学物理学量子力学自然科学泛函分析数学

大地测量学

大地测量学,根据德国大地测量学家F·R·Helmert的经典定义,它是一门量测和描绘地球表面的学科,也包括确定地球重力场和海底地形。.

大地测量学和科学 · 大地测量学和线性代数 · 查看更多 »

社会科学

会科学是用科学的方法,研究人类社会的種種现象。如社會學研究人類社會(主要是當代),政治學研究政治、政策和有關的活動,經濟學研究資源分配。广义的“社会科学”,是人文学科和社会科学的统称。 社會科學起源於西元1930年出版的《社會科學百科全書》(Encyclopaedia of the Social Sciences),其內容包含了社會學、人類學、經濟學、政治學、犯罪學、生物學、地理學、醫學、教育學、心理學、語言學、倫理學、藝術、社會工作學及法律學等與社會科學概論相關的一門學科。.

社会科学和科学 · 社会科学和线性代数 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

科学和统计学 · 线性代数和统计学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

物理学和科学 · 物理学和线性代数 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

科学和量子力学 · 线性代数和量子力学 · 查看更多 »

自然科学

自然科学是研究大自然中有机或无机的事物和现象的科学。自然科学包括天文學、物理学、化学、地球科学、生物学等等。.

科学和自然科学 · 线性代数和自然科学 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

泛函分析和科学 · 泛函分析和线性代数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

数学和科学 · 数学和线性代数 · 查看更多 »

上面的列表回答下列问题

科学和线性代数之间的比较

科学有173个关系,而线性代数有115个。由于它们的共同之处8,杰卡德指数为2.78% = 8 / (173 + 115)。

参考

本文介绍科学和线性代数之间的关系。要访问该信息提取每篇文章,请访问: