礦物和铌
快捷方式: 差异,相似,杰卡德相似系数,参考。
礦物和铌之间的区别
礦物 vs. 铌
物是是指在地质作用下天然形成的結晶狀纯净物(单质或化合物)。绝对的纯净物是不存在的,所以这里的纯净物是指物质化學成份相对单一的物质。矿物是组成岩石的基础(像石英、长石、方解石都是常见的造岩矿物),但礦物和岩石不同,礦物可以用其化學式表示,而岩石是由許多礦物及非礦物所合成,沒有一定的化學式。 礦物多半是非生物產生的无机化合物,一般为固体,有有序的原子結構,但也有液态的矿物,如汞(水銀)。有關礦物的精確定義尚有爭議,有爭議的是非生物產生,以及有序原子結構這二個條件。像褐鐵礦、黑曜岩等類似礦物,但沒有的物筫,會稱為準礦物。 研究礦物的自然科學稱為礦物學。世界上超過5300種,其中5,070種已由国际矿物学学会(IMA)批准過。地壳中有超過75%由是矽和氧組成,因此許多的矿物是硅酸盐矿物。礦物可以依其物理性質及化學性質區分,可以依其化學成份及晶體結構分為幾類,而在礦物形成時的溫度壓力等因素會影響其中一些性質。岩石所在的溫度、壓力及其主成份的變化,都會影響其中的礦物。也有可能礦物的主成份不變,但其中的礦物因溫度壓力改變而變化。 礦物可以用許多的物理性質來描述,而這些性質也和其化學結構及組成有關。常見的礦物物理性質有晶體結構及晶体惯态、硬度、光澤、透明度、顏色、條痕、韌性、解理、斷口、裂理(parting)及比重。進一步的特性包括對酸的反應、磁性、氣味或味道,以及放射性。 礦物可以依其主要化學成份分類,最主要的兩種分類系統分別是Strunz礦物分類及Dana礦物分類。矽酸鹽可以依其化學結構的同質多晶形性再細分為六小類。所有的矽酸鹽都有4−的矽酸根四面體,是一個矽原子和四個氧原子以四面體的方式鍵結。矽酸鹽又可以分為原矽酸鹽(orthosilicates,矽酸根沒有聚合)、二矽酸鹽(disilicates,二個矽酸根互相聚合)、环状硅酸盐(cyclosilicates,環狀的矽酸根)、链状硅酸盐(inosilicates,鏈狀的矽酸根)、层状硅酸盐(phyllosilicates,層狀的矽酸根)及網矽酸鹽(tectosilicates,三維的矽酸根結構)。其他重要的礦物分類有、、、、碳酸鹽、、。. 鈮(IUPAC名:niobium,化學符号:Nb) 是原子序為41的化學元素,曾有舊稱鈳(Columbium,化學符号:Cb)原在美洲使用,1949年IUPAC決定採歐洲使用的名稱。鈮是一種質軟的灰色可延展過渡金屬,一般出現在和中。其命名來自希臘神話中的尼俄伯,即坦塔洛斯之女。 鈮的化學和物理性質與鉭元素相近,因此兩者很難區分開來。英國化學家查理斯·哈契特在1801年宣佈發現一種近似於鉭的新元素,並將它命名為「Columbium」(鈳)。1809年,英國化學家威廉·海德·沃拉斯頓錯誤地把鉭和鈳判定為同一個元素。德國化學家海因里希·羅澤在1846年得出結論,指鉭礦物中確實存在另一種元素,他將其命名為「Niobium」(鈮)。在1864至1865年進行的一系列研究最终确认,鈮和鈳實為同一元素,與鉭則是不同的元素。接下來的一個世紀內,兩種稱呼都被廣泛通用。1949年,鈮成為了這一元素的正式命名,但美國至今仍在冶金學文獻中使用舊名「鈳」。 鈮直到20世紀初才開始有商業應用。巴西是目前鈮和鐵鈮合金的最大產國。鈮一般被用於製作合金,最重要的應用在特殊鋼材,例如天然氣運輸管道材料。雖然這些合金的含鈮量不會超過0.1%,但加入少量的鈮即可達到強化鋼材的作用。含鈮的高溫合金具有高溫穩定性,對製造噴射引擎和火箭引擎非常有用。鈮是第II類超導體的合金成份。這些超導體也含有鈦和錫,被廣泛應用在核磁共振成像掃描儀作超導磁鐵。 鈮的毒性低,亦很容易用陽極氧化處理進行上色,所以被用於錢幣和首飾。鈮的其他應用範疇還包括焊接、核工業、電子和光學等。.
之间礦物和铌相似
礦物和铌有(在联盟百科)3共同点: 碳酸盐,金属,氧化物。
碳酸盐是由碳酸根离子(CO32−)与其他金属离子组成的化合物,都是电解质除了CaCO3。 碳酸盐有正盐和酸式盐之分,通常是指碳酸正盐,正盐如碳酸钠、碳酸钙、碳酸钾等,在自然界分布极广泛,除碱金属碳酸盐及碳酸铵易溶于水外,其他碳酸盐仅微溶于水。 碳酸盐溶液中通入CO2得酸式碳酸盐;甚至微溶的碳酸盐在水中通入CO2,也将转化为可溶性的酸式碳酸盐。例如:碳酸钙在水中通入CO2即转化为酸式碳酸钙而溶解;酸式碳酸盐也叫碳酸氢盐或重碳酸盐;加热即放出CO2而成碳酸正盐,加热到更高温度进一步分解为CO2和金属氧化物。 此外还有碱式碳酸盐,如碱式碳酸铜、碱式碳酸铅等,也可以当作是另一类型的碳酸盐。.
碳酸盐和礦物 · 碳酸盐和铌 · 查看更多 »
金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.
礦物和金属 · 金属和铌 · 查看更多 »
氧化物,是负价氧和另外一个化學元素組成的二元化合物,例如氧化鐵(Fe2O3)或氧化鋁(Al2O3),通常經由氧化反應產生。氧化物在地球的地殻極度普遍,而在宇宙的固體中也是如此。 氧离子(O2−)是氢氧根(OH−)离子的共轭碱,存在某些氧化物离子晶体中。自由的氧离子具强碱性(pKb ~ -22),在水溶液中是不稳定的。 氧化物中的氧元素应该呈负氧化态。如果含氧二元化合物中的氧为正氧化态,例如二氟化二氧(O2F2)和二氟化氧(OF2),则它们一般称为氟化物,而非氧化物。.
氧化物和礦物 · 氧化物和铌 · 查看更多 »
上面的列表回答下列问题
礦物和铌之间的比较
礦物有85个关系,而铌有153个。由于它们的共同之处3,杰卡德指数为1.26% = 3 / (85 + 153)。
参考
本文介绍礦物和铌之间的关系。要访问该信息提取每篇文章,请访问: