徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

碳-12和鈹-8

快捷方式: 差异相似杰卡德相似系数参考

碳-12和鈹-8之间的区别

碳-12 vs. 鈹-8

12C是质量数为12的碳原子,其质子数和中子數都为6,它是碳元素的一種同位素,在世界现存碳元素中占比98.89%,是最常见的碳同位素。 碳-12原子被用来作为阿伏伽德罗常数(亞佛加厥常數)的标准:12克碳-12中所含原子的个数被定义为阿伏伽德罗常数6.022。. 鈹-8,是一种鈹的同位素。有4個中子和質子,氧化態為0時有4個電子,是一個放射性同位素。.

之间碳-12和鈹-8相似

碳-12和鈹-8有(在联盟百科)6共同点: 同位素中子質子氦-4放射性3氦過程

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

同位素和碳-12 · 同位素和鈹-8 · 查看更多 »

中子

| magnetic_moment.

中子和碳-12 · 中子和鈹-8 · 查看更多 »

質子

|magnetic_moment.

碳-12和質子 · 質子和鈹-8 · 查看更多 »

氦-4

氦-4,是氦的同位素之一,元素符號為4He。它的原子核由二顆質子和二顆中子所組成,其自旋量子數為0,是玻色子。氦-4是穩定同位素。其相對豐度是99.999863%。.

氦-4和碳-12 · 氦-4和鈹-8 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

放射性和碳-12 · 放射性和鈹-8 · 查看更多 »

3氦過程

3氦過程是3個氦原子核(α粒子)轉換成碳原子核的過程。 這種核融合反應可以在超過一億K的高溫和氦含量豐富的恆星內部迅速的發生。同樣的,它發生在較老年,經由質子-質子鏈反應和碳氮氧循環產生的氦,累積在核心的恆星。在核心的氫已經燃燒完後,核心將塌縮,直到溫度達到氦燃燒的燃點。 這個過程釋放出的淨能量為7.275 MeV。 在第一個階段形成的8Be是不穩定的,會經歷2.6×10-16秒就再分裂回氦,但是在氦燃燒能形成8Be的條件下,只要有微小的平衡豐度,就能再捕獲一個氦原子核形成12C。這種結合三個氦原子核轉換成碳的過程就稱為3氦過程。 由於3氦過程需要較長的時間才能形成碳,因此在太初核合成不太可能發生。此一結果可以說明大霹靂為何沒有製造出碳,因為在大霹靂之後的一分鐘,就已經低於核融合所需要的溫度了。 通常,3氦過程發生的可能性是非常低的,但是鈹-8在基態的能量幾乎就是氦的兩倍。在第二個階段,8Be + 4He幾乎就是碳在激發態下的能量。這種共振的狀態,使接踵而來的氦和鈹結合成碳的可能性大為增加。這種共振的存在被觀測到之前,基於物理上的必要性,為了在恆星內形成碳,弗雷德·霍伊爾就已經預測到了。實際上,這種能量共振和過程的預測然後真的被發現,對霍伊爾恆星核合成的假說:假設所有的化學元素都是從最初的氫-真正的原始物質-形成的,提供了非常重大的支持。 在過程中的一些副作用是,一些碳元素可能會和氦融合產生穩定的氧同位素,並且釋放出能量: 接下來的反應鏈是氧會再與氦結合生成氖,但再繼續下去就有困難了,因為核自旋規律的限制,結果使得更重的元素不容易在恆星核合成中形成。 這樣的情狀使得恆星核合成創造出來大量的碳和氧,只有一小部分能被轉換成氖和其他更重的元素。氧和碳都是氦燃燒的灰燼,而人擇原理曾被引用來解釋碳和氧在宇宙中被敏感的核共振大量創造出來的事實。 融合的過程能創造的元素只到鐵,更重的(在鐵之外的)元素只要是由中子捕獲創造的。慢中子捕獲(S-過程)生產出大約一半的重元素,另外的一半則可能由快中子捕獲(R-過程)在核塌縮的超新星中創造出來。.

3氦過程和碳-12 · 3氦過程和鈹-8 · 查看更多 »

上面的列表回答下列问题

碳-12和鈹-8之间的比较

碳-12有17个关系,而鈹-8有22个。由于它们的共同之处6,杰卡德指数为15.38% = 6 / (17 + 22)。

参考

本文介绍碳-12和鈹-8之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »