徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

碱金属

指数 碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

335 关系: 加拿大动作电位原子原子半径原子序数原子质量单位原子轨道原子量博物志 (老普林尼)半衰期华氏温标卤素单一同位素元素单键反-2-丁烯双原子分子叔丁醇钾吸热反应同位素同量素多硫化钠大爆炸天王星太初核合成太阳系的形成与演化官能团对角线规则密度屏蔽效应巴西不相容成分中子中等寿命裂变产物主族元素帕斯卡丙烯干燥剂乙炔亲核体二氧化硅二氧化碳应用化学 (期刊)代谢以色列伏打电堆异构化反应开尔文低氧化物位阻效应德国...德米特里·伊万诺维奇·门捷列夫俄罗斯土星地壳地壳元素丰度列表地球歷史化学元素发现年表化学物理学报化学文摘社化學元素豐度國家標準技術研究所價電子分子分馏切尔诺贝利核事故嵌入 (化學)催化剂冠醚冰晶石共价键元素元素周期律元素周期表光谱学国际原子能机构国际科学技术数据委员会四苯硼钠皮米皇家天文學會月報石墨石墨层间化合物矽酸鹽矿物油环戊二烯基钠硫化钠硫酸硫酸鹽硼族元素碱土金属碳负离子碳酸盐碳酸钠碳酸锂碳族元素碘-131碘化锂福岛第一核电站事故离子离子半径离子键离子晶体稳定同位素稀有元素稀有气体穴状配体第8周期元素精神病学紫丁香色约旦纯粹与应用化学经济学人细胞细胞膜置换反应美國地質調查局美国美国化学会志美国国家学院烟火痕量同位素痕量放射同位素甲基锂电子电子亲合能电子盐电子排布电离能电解电解质电负性焦耳每摩尔焰色反应熔点煤油物理年鑑物理评论快报盐酸相对论相对论量子化学相變白俄罗斯百萬分率Eka銣的同位素銫的同位素靶恩衰變鏈食盐角闪石體積莫爾濃度負離子超重元素超氧化物超氧化钾超新星鹼化物鹽田躁鬱症达姆施塔特还原剂过氧化物过氧化钠过氧化钾过敏錒的同位素能级舊量子論鈣的同位素鈉的同位素阿贡国家实验室钠灯钫的同位素钾石盐肥料锂离子电池脂肪酸膳食礦物質膳食营养素参考摄入量膜电势自然 (期刊)自然出版集团自燃臭氧化物臘肉金属金属半径金属键金属氢金屬互化物配合物鉀的同位素鋰的同位素英國皇家天文學會英国皇家化学学会鋇的同位素電子層電子伏特電荷電極化老普林尼GSI亥姆霍兹重离子研究中心International Union of Pure and Applied ChemistryIUPACOxford English DictionaryPH值S区元素Uue极性核子核素核燃料棒核聚变核试验核液滴线标准状况次原子粒子正丁基锂氟化锂氢负离子氢氧化钠氢氧化钾氢氧化铝氢氧化锂氢氧根氧化剂氧化钠氧化锂氧化态氧气氧族元素氮化物氮化鋰氯化钠氯化钾氯化钙氯化铯氯化锂水溶液永斯·贝采利乌斯气体沸石沸点泡菜津特耳相活化能液氨液滴模型溶解性滷水潮解激发态木星有机钠化学有机锂试剂有机溶剂有效核电荷戈亚尼亚海床海王星海水浓度施普林格科学+商业媒体族 (化学)摄氏温标放射性放射性同位素放热反应扩展元素周期表急性辐射综合症晶体结构晶格能12-冠-415-冠-518-冠-62.2.2-穴醚3氦過程 扩展索引 (285 更多) »

加拿大

加拿大(英语、法语:Canada,IPA读音:(英)(法))为北美洲国家,西抵太平洋,东至大西洋,北滨北冰洋,东北方与丹麦领地格陵兰相望,东部与圣皮埃尔和密克隆相望,南方及西北方与美国接壤。加拿大的领土面积达998万平方公里,为全球面积第二大国家。加拿大素有「枫叶之国」的美誉,渥太华为该国首都。 加拿大在1400年前即有原住民在此生活。15世纪末,英国和法国殖民者开始探索北美洲的东岸,并在此建立殖民地。1763年,当七年战争结束后,法国被迫将其几乎所有的北美殖民地割让予英国。在随后的几十年中,英国殖民者向西探索至太平洋地区,并建立了数个新的殖民地。1867年7月1日,1867年宪法法案通过,加拿大省、新不伦瑞克、新斯科舍三个英属北美殖民地组成加拿大联邦,其中加拿大省分裂为安大略和魁北克。在随后100多年里,其它英属北美殖民地陆续加入联邦,组成现代加拿大。 加拿大是实行聯邦制、君主立憲制及議會制的國家,由十个省和三个地区组成,英国女王伊丽莎白二世為國家元首及加拿大君主,而加拿大總督為其及政府的代表。加拿大是双语国家,英语和法语为官方语言,原住民的語言被認定為第一語言。由於位於高緯度地廣人稀,该国是世界上擁有多元化種族及文化的國家,也是移民為主的国家,约五分之一的国民出生于境外,近年來移民大部分來自亞洲。 得益於豐富的自然資源和高度發達的科技,加拿大是富裕、经济发达的国家。以国际汇率计算,加拿大的人均国内生产总值在全世界排名第十六,人类发展指数排名第十。它在教育、政府的透明度、自由度、生活品质及经济自由的都名列前茅。积极参与国际事务,是联合国、北大西洋公約組織、北美空防司令部、七大工業國組織、二十国集团、英联邦、经济合作与发展组织、及太平洋岛国论坛的成员。.

新!!: 碱金属和加拿大 · 查看更多 »

动作电位

動作電位(英文:action potential),指的是靜止膜電位狀態的细胞膜受到適當刺激而产生的,短暂而有特殊波形的跨膜电位搏动。细胞产生动作电位的能力被称为兴奋性,有这种能力的细胞如神经细胞和肌细胞。动作电位是实现神经传导和肌肉收缩的生理基础。 一個初始刺激,只要達到了阈电位(threshold potential),不論超過了多少,也就是,就能引起一系列离子通道的开放和关闭,而形成离子的流动,改变跨膜电位。而这个跨膜电位的改变尤能引起临近位置上细胞膜电位的改变,这就使得兴奋能沿着一定的路径传导下去。.

新!!: 碱金属和动作电位 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 碱金属和原子 · 查看更多 »

原子半径

原子半径通常指原子的尺寸,并不是一个精确的物理量,并且在不同的环境下数值也不同。 一个特定的原子的半径值和所选用的原子半径的定义相关,而在不同的环境下给原子半径不同定义比统一的定义更合适。 术语原子半径本身就有疑问:可能指一个自由原子的尺寸,或者可能用作原子(包括分子中的原子和自由原子)尺寸不同测量方式的一个笼统的术语。在下文中,这个术语还包括离子半径,主要是因为共价键和离子键区别不大。而原子的定义“能区分出化学元素的最小粒子”本身就比较含糊,包括了自由原子以及与其它相同或不同原子一起组成化学物的原子。除了离子半径,其他可能指代的半径值包括玻尔半径,范德华半径,共价半径和金属半径等。 原子半径完全由电子决定,原子核的大小为是电子云的十万分之一。值得注意的是原子核没有固定的位置,而电子云没有固定的边界。 虽然有上述的困难,目前还是有很多的测量原子(包括离子)的方法,这些方法通常基于实验测量和计算方式的结合。目前普遍认为原子像一个球体,尺寸在30–300皮米之间,在元素周期表中的原子半径变化有规律可循,从而对元素的化学特性造成影响。.

新!!: 碱金属和原子半径 · 查看更多 »

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

新!!: 碱金属和原子序数 · 查看更多 »

原子质量单位

原子质量单位(Atomic mass unit,amu),现称统一原子质量单位(Unified atomic mass unit,u)或道爾頓(dalton,Da),是用来衡量原子质量的单位,定义为靜止未鍵結且處於基態碳12原子质量的1/12。.

新!!: 碱金属和原子质量单位 · 查看更多 »

原子轨道

原子軌域(atomorbital;atomic orbital),又稱軌態,是以數學函數描述原子中電子似波行為陳藝菁、張祖辛,,國科會高瞻計畫資源平台。2010年12月11日查閱。。此波函數可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置。「軌域」便是指在波函數界定下,電子在--空間出現機率較大的區域。具體而言,原子軌域是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌域波函數描述。 現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)運行。然而,電子不能被視為形狀固定的固體粒子,原子軌域也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的「大氣」(電子),分布於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌域才能精準符合「大氣」的形狀。當原子中有越來越多電子時,電子越傾向均勻分布在原子核四周的空間體積中,因此「電子雲」越傾向分布在特定球形區域內(區域內電子出現機率較高)。 在原子物理學的運算中,複雜的電子函數常被簡化成較容易的原子軌域函數組合。雖然多電子原子的電子並不能以「一或二個電子之原子軌域」的理想圖像解釋,它的波函數仍可以分解成原子軌域函數組合,以原子軌域理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌域「構成」,每個原子軌域內只含一或二個電子。.

新!!: 碱金属和原子轨道 · 查看更多 »

原子量

原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.

新!!: 碱金属和原子量 · 查看更多 »

博物志 (老普林尼)

《博物志》(Naturalis Historia,又译《自然史》)是古罗马学者老普林尼在77年写成的一部著作,被认为是西方古代百科全书的代表作。全书共37卷,分为2500章节,引用了古希腊327位作者和古罗马146位作者的2000多部著作。在书成后1500年间,共出了40多版。 老普林尼虽然将此书题献给罗马皇帝提圖斯,但是全书160卷羊皮纸手稿并未献出,而是传给了养子小普林尼。.

新!!: 碱金属和博物志 (老普林尼) · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

新!!: 碱金属和半衰期 · 查看更多 »

华氏温标

華氏溫標是一种温標,符号为℉。华氏温标的定義是:在标准大气压下,冰的熔点为32℉,水的沸点为212℉,中间有180等分,每等分为华氏1度。.

新!!: 碱金属和华氏温标 · 查看更多 »

卤素

卤素是元素周期表上的第ⅦA族元素(IUPAC新规定:17族),包括氟(F)、氯(Cl)、溴(Br)、碘(I)、-zh-hans:砹; zh-hant:砈;-(At)和(Ts)。.

新!!: 碱金属和卤素 · 查看更多 »

单一同位素元素

單一同位素元素是指只有一個穩定同位素的元素。.

新!!: 碱金属和单一同位素元素 · 查看更多 »

单键

#重定向單鍵.

新!!: 碱金属和单键 · 查看更多 »

反-2-丁烯

由第二丁基氯之去鹵化氫反應形成反-2-丁烯,副產物為氯離子和水分子 \ C_4H_9Cl + OH^- \to C_4H_8 + Cl^- + H_2O 此反應仍會產生少量的1-丁烯和順-2-丁烯 Category:烯烃.

新!!: 碱金属和反-2-丁烯 · 查看更多 »

双原子分子

雙原子分子指所有由兩個原子組成的分子。雙原子分子內的化學鍵通常是共價鍵。 很多非金屬元素(包括氫、氮、氧、氟、氯、溴、碘等)的單質均是雙原子分子。其他元素(如磷)也可能以雙原子分子構成單質,但這些雙原子分子並不穩定。這些構成單質的雙原子分子稱為同核雙原子分子。其中,氮和氧的同核雙原子分子佔地球大氣層成份的 99%。 以雙原子分子存在的化合物包括一氧化碳、一氧化氮、氯化氫等。這些雙原子分子稱為異核雙原子分子。.

新!!: 碱金属和双原子分子 · 查看更多 »

叔丁醇钾

叔丁醇钾(Potassium tert-butoxide)是一种常用的醇盐,化学式为(CH3)3COK。这种无色固体是有机合成中常用的强碱,其共轭酸叔丁醇的pKa大约为17。固态时它以四聚的类立方烷原子簇形式存在。在化学文献中经常用t-BuOK来表示叔丁醇钾。.

新!!: 碱金属和叔丁醇钾 · 查看更多 »

吸热反应

吸热反应是吸收熱量的一类化学反应,与放热反应相对。在吸热反應中,破坏化学键所用的能量大于组成键所释放的能量,其通式为: 因此,其焓变(ΔH)大于0。.

新!!: 碱金属和吸热反应 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

新!!: 碱金属和同位素 · 查看更多 »

同量素

同量素是質量數相同,但質子數不同的原子核。同量素必然是不同的元素。例:Cu (原子序29) 和 Zn (原子序30) 具有質量數同為65的同量素。 理論上,兩個以上的同量素不會都是穩定的,例如Ar-40,它使得Ca-40理論上不穩定,而I-126衰變為Te-126與Xe-126(理論上不穩定)之機率幾乎相同,而沒有任何穩定同位素之質量數為5(氦4加上一個質子或中子)、8(衰變為兩個氦4核素)、145、147、148、149、151、182、183、184、186、192以及209或以上。.

新!!: 碱金属和同量素 · 查看更多 »

多硫化钠

#重定向 多硫化物.

新!!: 碱金属和多硫化钠 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 碱金属和大爆炸 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 碱金属和天王星 · 查看更多 »

太初核合成

太初核合成(BBN)是物理宇宙學的一個概念,指宇宙在早期階段產生H-1(最常見,也是最輕的氫同位素,只有單獨的一個質子)之外原子核的過程。太初核合成在大霹靂之後只經歷了幾分鐘,相信與一些較重的同位素的形成,如氘(H-2或D)、氦的同位素(He-3和He-4)、鋰的同位素(Li-6和Li-7)的形成有密切的關係。除了這些穩定的原子核之外,還有一些不穩定的放射性同位素在太初核合成之際也形成了:氚(H-3)、鈹(Be-7和Be-8)。這些不穩定的同位素不是蛻變就是融合成前述其它的穩定同位素。(所有這些原子核通常表示為NX,此處X.

新!!: 碱金属和太初核合成 · 查看更多 »

太阳系的形成与演化

太陽系的形成和演化始于46亿年前一片巨大分子云中一小塊的引力坍缩。大多坍缩的质量集中在中心,形成了太阳,其余部分摊平並形成了一个原行星盤,继而形成了行星、卫星、陨星和其他小型的太阳系天体系统。 这被稱為星云假说的广泛接受模型,最早是由18世纪的伊曼纽·斯威登堡、伊曼努尔·康德和皮埃尔-西蒙·拉普拉斯提出。其随后的发展與天文学、物理学、地质学和行星学等多种科学领域相互交织。自1950年代太空时代降臨,以及1990年代太阳系外行星的发现,此模型在解释新发现的过程中受到挑战又被進一步完善化。 从形成開始至今,太阳系经历了相當大的變化。有很多卫星由环绕其母星气体與尘埃组成的星盘中形成,其他的卫星据信是俘获而来,或者来自于巨大的碰撞(地球的卫星月球属此情况)。天体间的碰撞至今都持续发生,並為太阳系演化的中心。行星的位置经常遷移,某些行星间已經彼此易位。这种行星迁移现在被认为对太阳系早期演化起負擔起绝大部分的作用。 就如同太阳和行星的出生一样,它们最终将灭亡。大约50亿年后,太阳会冷却並向外膨胀超过现在的直径很多倍(成为一个红巨星),抛去它的外层成为行星狀星云,並留下被称为白矮星的恒星尸骸。在遥远的未来,太阳的环绕行星会逐渐被经过的恒星的重力卷走。它们中的一些会被毁掉,另一些则会被抛向星际间的太空。最终,数万亿年之后,太阳终将会独自一个,不再有其它天体在太阳系轨道上。.

新!!: 碱金属和太阳系的形成与演化 · 查看更多 »

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

新!!: 碱金属和官能团 · 查看更多 »

对角线规则

锂的化学性质与其它碱金属有明显差别,但却与镁明显相似。铍也有类似的现象,铍的化学性质与其它碱土金属有明显差别,但却与铝明显相似。这种现象叫做对角线规则(或斜向關係)。.

新!!: 碱金属和对角线规则 · 查看更多 »

密度

3 | symbols.

新!!: 碱金属和密度 · 查看更多 »

屏蔽效应

#重定向 斯莱特定则.

新!!: 碱金属和屏蔽效应 · 查看更多 »

巴西

巴西联邦共和国(República Federativa do Brasil),通稱巴西,是拉丁美洲最大的国家,人口数略多於2億,居世界第五。其國土位於南美洲東部,毗鄰大西洋,面積8,515,767平方公里,世界第五大,僅次於俄羅斯、中國、加拿大及美國。巴西和乌拉圭、阿根廷、巴拉圭、玻利维亚、秘鲁、哥伦比亚、委内瑞拉、圭亚那、苏里南及法属圭亚那接壤。巴西拥有辽阔的农田和广袤的雨林,国名源于巴西红木。其國旗之含義為:綠色-廣大的叢林;黃色-豐富的礦產;藍色-南半球的星空,其中27顆星分別代表26個州與1個聯邦特區,一道國家格言「紀律與進步」橫跨其中。得益于丰厚的自然资源和充足的劳动力,巴西的国内生产总值位居南美洲第一,世界第六,西半球第三,南半球第一,為南美洲國家聯盟的成員國。由于历史上曾为葡萄牙的殖民地,巴西的官方语言为葡萄牙语。.

新!!: 碱金属和巴西 · 查看更多 »

不相容成分

不相容成分是一个于岩石学和地球化学中使用的术语。 在对部分熔融的地幔和地壳以及岩浆和岩浆衍生物的分析结晶过程中,一些难以进入矿物中阳离子聚集区域的元素集中在液态的熔浆里。不相容成分是指因大小或者电荷而不能进入矿物中阳离子聚集区域的元素,它是由介于造岩矿物和岩浆之间小于1的分配系数确定的。 有两组很难转为固体阶段的元素以其简称而广为人知。一组元素含有较大的离子半径,这组包括钾,铷,铯,锶,钡(这组元素又称为LILE,或者大型亲岩元素离子),另一组元素含有较高的离子化合价,这组包括锆,铌,铪,稀土元素,钍,铀和钽(这组元素又称为HFSE,或者高场强元素)。 Category:地球化学 Category:矿物学.

新!!: 碱金属和不相容成分 · 查看更多 »

中子

| magnetic_moment.

新!!: 碱金属和中子 · 查看更多 »

中等寿命裂变产物

#重定向 长寿命裂变产物#中等壽命裂變產物.

新!!: 碱金属和中等寿命裂变产物 · 查看更多 »

主族元素

主族元素是化學上對元素的一種分類,是指週期表中s區及p區的元素。週期表中除了過渡金屬、鑭系元素、錒系元素之外的都是主族元素。 主族元素包括:.

新!!: 碱金属和主族元素 · 查看更多 »

帕斯卡

帕斯卡(符號Pa或Pascal)是國際單位制(SI)的壓強單位。在不致混淆的情況下也可簡稱為「帕」。它等於每平方米一牛頓。以法國學者(同時身兼數學家、物理學家、化學家、音樂家、宗教家、教育家、氣象學家、哲學家)布莱茲·帕斯卡之名而命名。百帕(hPa)和千帕(kPa)也是自Pa衍生出來的氣象常用單位,正常海平面約101kPa、或1013百帕。.

新!!: 碱金属和帕斯卡 · 查看更多 »

丙烯

丙烯,分子式C3H6,是无色可燃气体,可以通过石油裂解而获得。在各种烯烴结构中,丙烯为仅次于乙烯较为简单的烯烃结构。 在大量運輸時,使用加壓液化。丙烯的饱和蒸汽压在25℃時為1158kPa。.

新!!: 碱金属和丙烯 · 查看更多 »

干燥剂

乾燥劑是指能除去潮湿物质中水分的物质,常分为两类:化学干燥剂,如硫酸钙和氯化钙等,--与水结合生成水合物进行干燥;物理干燥剂,如硅胶與活性氧化铝等,--物理吸附水进行干燥。 溼氣的管控是與產品的良率是息息相關的。以食品而言,在適當的溫度和溼度下,食物中的細菌和黴菌便會以驚人的速度繁殖,使食物腐壞,造成受潮及色變。電子產品也會因溼度過高造成金屬氧化,產生不良。乾燥劑的使用,便是為了要避免多餘的水分造成不良品的發生,它可以使黴菌和其他微生物無法生長,並延長保存期限。.

新!!: 碱金属和干燥剂 · 查看更多 »

乙炔

乙炔,俗稱風煤(實際上風煤是指氧氣與乙炔組成之套件,風指壓縮氧、煤指乙炔,並非單單乙炔稱為風煤)、電石氣、電土,是炔烴化合物系列中體積最小的一員,主要作工業用途,特別是燒焊金屬方面。 乙炔於1836年由英國科學家艾德蒙·戴维(Edmund Davy)發現,化學式為,有一個如下圖所示的直线型結構: 乙炔在室溫下是無色、極易燃的氣體。純乙炔是無臭的,但工業用乙炔由於含有硫化氫、磷化氫等雜質,而有一股大蒜的氣味。乙炔的化學能主要貯存於它的三鍵中。 在攝氏400度以上, 乙炔會聚合生成乙烯基乙炔()和苯()。在攝氏900度以上則會形成炭黑。 碳酸鈣(石灰岩)和煤炭是生產乙炔的主要原料。首先,碳酸鈣會轉化為氧化鈣,煤炭則轉化為焦炭。然後氧化鈣和焦炭會發生反應形成碳化鈣和一氧化碳: 碳化钙加水會形成乙炔和氫氧化鈣:CaC2 +2H2O → C2H2↑ + Ca(OH)2.

新!!: 碱金属和乙炔 · 查看更多 »

亲核体

親核體,又叫親核基、親核試劑(Nucleophile,意思為原子核的喜好物)是一個基本的有機化學概念,指具有親核性的化学试剂,可用:Nu表示。它用来衡量一个试剂给电子能力的强弱。一般而言,与亲电试剂反应中,親核體亲核性越高,越容易產生化學反應。親核體在有機化學反應中提供電子,因此根據酸鹼電子理論的定義,親核體可視為路易士鹼。任何有孤電子對的分子、原子或陰離子均可作為親核體。 亲核性与碱性类似,但有所不同。很多情况下碱性高的物质亲核性也高,比如胺的碱性和亲核性均强于醇。但不尽然,比如膦的碱性弱于胺,而亲核性则强于胺。.

新!!: 碱金属和亲核体 · 查看更多 »

二氧化硅

二氧化硅(化学式:Si)是一种酸性氧化物,对应水化物为硅酸(Si)。它从古代以来就已经被人们知道了。 二氧化硅在自然界中最常见的是石英,以及在各种生物体中。在世界的许多地方,二氧化硅是砂的主要成分。二氧化硅是最复杂和最丰富的材料家族之一,既是多种矿物质,又是被合成生产的。 值得注意的实例包括熔融石英,水晶,热解法二氧化硅,硅胶和气凝胶。 应用范围从结构材料到微电子学到食品工业中使用的成分。 二氧化硅是硅最重要的化合物,约占地壳质量的12%。自然界中二氧化硅的存在形态有结晶形和无定形两大类,统称硅石。.

新!!: 碱金属和二氧化硅 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 碱金属和二氧化碳 · 查看更多 »

应用化学 (期刊)

《应用化学》(Angewandte Chemie)是一本涵盖化学所有方面的同行评审科学期刊,每周出版一期。2011年,该刊的影响因子为13.455,它是发表原创研究的化学期刊中影响因子最高的;2013年被被美国化学会志(IF.

新!!: 碱金属和应用化学 (期刊) · 查看更多 »

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

新!!: 碱金属和代谢 · 查看更多 »

以色列

以色列(יִשְׂרָאֵל;),正式名称是以色列国(help;دَوْلَة إِسْرَائِيل),是位於西亚的主权国家,坐落於地中海东南岸及红海亚喀巴湾北岸,北靠黎巴嫩,东北邻叙利亚,东与约旦接壤,巴勒斯坦领土(巴勒斯坦国对其宣称主权,但局部为以色列所控制)的约旦河西岸地区和加沙地带各居东西,西南则为埃及。其领土范围不大,但地形和气候相当多样。以色列的金融及科技创新中心為特拉维夫,而耶路撒冷則为其法定首都(美國承認)、各政府机构所在地(国防部除外)及其轄下的第一大城市(特拉维夫都会圈人口最多)。以色列对耶路撒冷的主权在国际上有爭議。美国東岸时间2017年12月6日下午1時,特朗普正式在白宫外交厅宣布美国承认耶路撒冷为以色列首都。 1947年11月29日,聯合國大會建議在巴勒斯坦托管地推行分治方案。這一方案規定了新的阿拉伯和猶太國家的國界,並指定耶路撒冷及其周邊地區將為聯合國進行國際管理Harris, J. (1998) The Journal of the Society for Textual Reasoning, Vol.

新!!: 碱金属和以色列 · 查看更多 »

伏打电堆

伏打电堆(Voltaic pile),又名伏打堆,是最早出現的化學電池,是在1800年由義大利物理學家亞歷山卓·伏打伯爵發明。 伏打電堆由很多個單元堆積而成,每一單元有鋅板與銅板各一,其中夾著浸有鹽水的布或紙板。伏打电堆每个单元可以产生0.76V的开路电压,拥有六个单元的伏打电堆其开路电压大约是4.56V。 File:VoltaBattery.JPG|義大利伏打寺(紀念伏打並展示相關文物的博物館)的伏打電堆原型 File:Volta batteries.jpg|伏打電堆 File:Voltaic_pile.svg|鋅銅伏打電堆的構造解析.

新!!: 碱金属和伏打电堆 · 查看更多 »

异构化反应

异构化反应也称异构化,指某种化学物质在特定条件下改变自身的组成结构,从而成为新物质的反应。产物通常是反应物的异构体。许多异构体的键能相差不大,因此在常温下可相互转化。.

新!!: 碱金属和异构化反应 · 查看更多 »

开尔文

开尔文(Kelvin)是温度的计量单位。它是國際單位制(SI)的七个基本單位之一,符號为K。以开尔文计量的温度标准称为热力学温标,其零点为绝对零度。在热力学的经典表述中,绝对零度下所有热运动停止。1开尔文定义为水的三相点與绝对零度相差的。水的三相点是0.01°C,因此温度变化1攝氏度,相当于变化了1开尔文。 开氏温标得名自英國工程师和物理学家威廉·汤姆森,第一代开尔文男爵(1824–1907)。.

新!!: 碱金属和开尔文 · 查看更多 »

低氧化物

低氧化物是一类特殊的氧化物,和相对“正常”氧化物相比,其中低电负性的元素原子个数偏多。Simon, A. ”Group 1 and 2 Suboxides and Subnitrides — Metals with Atomic Size Holes and Tunnels” Coordination Chemistry Reviews 1997, volume 163, Pages 253–270.

新!!: 碱金属和低氧化物 · 查看更多 »

位阻效应

位阻效应(也叫空间效应、空间位阻效应、立体效应)是研究分子中不同基团间電子團重疊形成的電磁力而造成的分子结构或反应取向的立体化学分枝。广泛应用于有机化学中分子结构及反应机理的定性讨论,但在有些情况下可能导致偏差或谬误。 Category:立体化学 Category:物理有机化学.

新!!: 碱金属和位阻效应 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 碱金属和德国 · 查看更多 »

德米特里·伊万诺维奇·门捷列夫

德米特里·伊萬諾維奇·門捷列夫(ˈdmʲitrʲɪj ɪˈvanəvʲɪtɕ mʲɪndʲɪˈlʲejɪf ,),19世纪俄国科學家,發現化學元素的週期性,依照原子量,製作出世界上第一張元素週期表,并据以预见了一些尚未发现的元素。.

新!!: 碱金属和德米特里·伊万诺维奇·门捷列夫 · 查看更多 »

俄罗斯

俄罗斯联邦(a,缩写为РФ),簡稱俄罗斯(a),是位於欧亚大陆北部的聯邦共和國,國土横跨欧亞两大洲,为世界上土地面积最大的国家,拥有超过1700万平方公里的面积,占地球陆地面积八分之一;它也是世界上第九大人口国家,拥有1.47亿人口,77%居住于其较为发达的欧洲部分。俄罗斯国土覆盖整个亚洲北部及东欧大部,横跨11个时区,涵盖广泛的环境和地形。拥有全世界最大的森林储备和含有约世界四分之一的淡水的湖泊。俄罗斯有十四個陸上鄰國(從西北方向起逆时针序):挪威、芬兰、爱沙尼亚、拉脱维亚、立陶宛、波蘭、白俄罗斯、乌克兰、格鲁吉亚、阿塞拜疆、哈萨克斯坦、中国、蒙古和朝鲜(其中立陶宛和波蘭僅與俄羅斯外飛地加里寧格勒州接壤),另外與阿布哈茲和南奧塞梯兩個只有俄羅斯承認的非聯合國會員國接壤。同時,俄羅斯還與日本、美国、加拿大、格陵蘭(丹麥)、冰島、瑞典、土耳其隔海相望。俄羅斯北部和東部分別為北冰洋和太平洋包圍,西北和西南則分別可經由波羅的海和黑海通往大西洋。 俄罗斯历史始于欧洲的东斯拉夫民族,聚集区域自公元3世纪至8世纪逐渐扩大。在9世纪,源自北欧的瓦良格人武士精英建立了基辅罗斯这个中世纪国家并开始统治。公元988年,国家从拜占庭帝国采纳了东正教会,随后由此开始,千年拜占庭与斯拉夫文化的融合成为了今日的俄罗斯文化。基辅罗斯最终解散分化为众多公国,被蒙古人逐一击破,并均在13世纪成为了金帐汗国的一部份。莫斯科大公自14世纪起逐渐崛起并统一周边俄罗斯诸侯国,在15世纪成功从金帐汗国独立,且成为了基辅罗斯文化和政治的继承者。16世纪起伊凡四世自称沙皇,自詡「第三羅馬」。在18世纪,俄罗斯沙皇国通过征服、吞并和探索而擴張。彼得一世稱帝成立了俄罗斯帝国,最終成為史上領土第三大帝国,疆域最大曾自中欧的波兰连绵至北美的阿拉斯加。 1917年俄国革命后,俄罗斯苏维埃联邦社会主义共和国成为了世界上第一个宪法意义上的社会主义国家,并成为随后成立的苏维埃社会主义共和国联盟的主体和其最大的加盟共和国。二战时期,苏联为同盟国的胜利扮演了决定性的角色。在战后其崛起成为公认的超级大国,并在冷战时期与美国互相竞争。苏联时期产生了20世纪的许多最重要的科技成就,其中包括世界第一颗人造地球卫星,以及首次将人类送入太空。在1990年,苏联为世界上第二大经济体,且拥有世界上最多的常备军人以及最多的大规模杀伤性武器库存。1991年苏联解体后,包括俄罗斯在内的15个共和国从原苏联独立;身為原蘇聯最大的加盟共和国,俄羅斯通过修宪改制为俄罗斯联邦,成为原苏联的唯一法理继承国家,政體採用聯邦制、民主共和制及半总统制。 截至2015年,俄罗斯根据国民生产总值为世界第13大经济体,根据购买力平价为世界第六大经济体。俄罗斯拥有世界上最大储量的矿产和能源资源,是世界上最大的石油和天然气输出国.

新!!: 碱金属和俄罗斯 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 碱金属和土星 · 查看更多 »

地壳

在地理上,地殼(Crust)是指一个星球最外層的實心薄殼,可以用化學方法将它与地幔區别。地球,月球,水星,金星,火星以及其它星球的地殼大部分都是由火成岩形成的,星球的地殼比起它们的地幔有更多的不相容成分。.

新!!: 碱金属和地壳 · 查看更多 »

地壳元素丰度列表

#重定向 地球的地殼元素豐度列表.

新!!: 碱金属和地壳元素丰度列表 · 查看更多 »

地球歷史

地球歷史,在地球由原始太陽星雲的部份物質構成後計起,科學家估計大約有46億到50億年之間。而因為表述這麼長久的時間有所困難,可將地球的歷史模擬為二十四小時(將地球形成的時間設定為凌晨零時,而此時此刻為翌日的凌晨零時),每秒大約代表5萬3000年,而大爆炸與宇宙形成的時刻,則大約在137億年前,以此模擬時間來說約等於三日前,即地球誕生前兩日。.

新!!: 碱金属和地球歷史 · 查看更多 »

化学元素发现年表

#重定向 化學元素發現年表.

新!!: 碱金属和化学元素发现年表 · 查看更多 »

化学物理学报

化学物理学报(Journal of Chemical Physics)是一份科学学术期刊,发表化学物理各领域的论文,由美国物理协会出版,每年出版两卷,各24期。 from the J. Chem.

新!!: 碱金属和化学物理学报 · 查看更多 »

化学文摘社

化学文摘社(Chemical Abstracts Service,简称CAS)位于美国俄亥俄州哥伦布,是美国化学会的一个分支机构,负责整理并发行化学文摘及其相关产品。 化学文摘社提供世界上最大的公开披露的化学相关信息的数据库,并且提供相关的文献检索软件为用户提供原始文献和专利的链接。尽管不同的数据库及检索工具有不同的名称,它们通常被统称为“化学文摘”。.

新!!: 碱金属和化学文摘社 · 查看更多 »

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

新!!: 碱金属和化學元素豐度 · 查看更多 »

國家標準技術研究所

美国国家标准技术研究所(National Institute of Standards and Technology,简写为NIST)的前身为国家标准局(NBS,1901年~1988年),是一家测量标准实验室,属于美国商务部的非监管机构。该研究所的官方使命为: NIST雇佣有大约2900名科学家、工程师、科技工作者,以及后勤和管理人员,大约1800名辅助工作人员(来自美国公司和国外的工程师和研究员),另外还有1400名专家分布在国内约350个附属研究中心里。.

新!!: 碱金属和國家標準技術研究所 · 查看更多 »

價電子

在化學中,價電子(,又名最外電子層),是表示原子最外電子層的電子,或者原子價的電子。 價電子在決定一元素如何與其他元素進行化學反應時起了重要作用:原子價電子愈少,原子就愈不穩定亦愈容易反應。.

新!!: 碱金属和價電子 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 碱金属和分子 · 查看更多 »

分馏

分馏是分离几种不同沸点的挥发性物质的混合物的一种方法;对某一混合物进行加热,针对混合物中各成分的不同沸点进行冷却分离成相对纯净的单一物质过程。过程中没有新物质生成,只是将原来的物质分离,属于物理变化。分馏实际上是多次蒸馏,它更适合于分离提纯沸点相差不大的液体有机混合物。如煤焦油的分馏;石油的分馏。當物質的沸點十分接近時,約相差20度,則無法使用簡單蒸餾法,可改用分餾法。分餾柱的小柱可提供一個大表面積予蒸氣凝結。 分餾塔是用於增加表面面積,有助較難揮發的氣體凝結 圓底瓶或梨形瓶用於防止不平均的加熱.

新!!: 碱金属和分馏 · 查看更多 »

切尔诺贝利核事故

切尔诺贝利核事故(Авария на Чернобыльской АЭС,Chernobyl disaster),或簡稱切尔诺贝利事件,是1986年4月26日於苏联乌克兰普里皮亚季市切尔诺贝利核電站发生的核子反應爐破裂事故。該事故是歷史上最嚴重的核電事故,也是首例被國際核事件分級表評為最高第七級事件的特大事故。主因為反應爐进行供電測試时,因設計缺陷與操作人員的訓練不足,功率的劇增導致反應爐被破坏,並使大量的放射性物質被釋放到環境中。最初发生的蒸氣爆炸導致兩人死亡,接踵而至的絕大部分受害者的病因及死因都歸咎於事故中釋放的高能放射線,然而輻射塵少量放射導致的影響依舊爭論不休。 1986年4月26日凌晨1點23分(UTC+3),乌克兰普里皮亚季鄰近的切尔诺贝利核電廠的第四號反應爐發生爆炸。連續的爆炸引发大火並釋放大量高能輻射物質到大氣層,這些放射性塵埃覆蓋了大面积區域。這次災難所釋放出的輻射線劑量是二戰時期廣島原子彈爆炸的400倍以上。被核輻射塵污染的雲層飄往众多地区,包括前蘇聯西部的部分地區、西歐、東歐、斯堪地那維亞半島、不列顛群島和北美東部部分地區。此外,烏克蘭、白俄羅斯及俄羅斯境內均受到嚴重的核污染,超過336,000名的居民被迫撤離。前蘇聯官方的報告表示 (quoting the "Committee on the Problems of the Consequences of the Catastrophe at the Chernobyl NPP: 15 Years after Chernobyl Disaster", Minsk, 2001, p. 5/6 ff., and the "Chernobyl Interinform Agency, Kiev und", and "Chernobyl Committee: MailTable of official data on the reactor accident") ,約60%受到輻射塵污染的地區皆位於白俄罗斯境內。經濟上,這場災難總共损失大概两千亿美元(已计算通货膨胀),是近代歷史中代價最“昂贵”的災難。 這次意外引起了全世界對於蘇聯核電工業上的安全顧慮,并減緩了一系列的核電工程進度。同時,此事件令蘇聯政府的訊息公佈更趨透明化。蘇聯解體後的獨聯體及各獨立國家,包括俄羅斯、烏克蘭、白俄羅斯,至今仍為切尔诺贝利事件所遺留下來的污染問題付出極大的代價。此次事故對當地乃至全球生態造成了難以想像的負面影響,僅事件所造成的死亡人數就因多種原因難以精確計算,其中前蘇聯時期的刻意隱瞞,使得統計工作變得非常困難。事實上,前蘇聯當局在事件發生後不久,就禁止醫生在死亡證明文件上提及「輻射線」的死因事實。 由國際原子能總署和世界衛生組織所主導的切尔诺贝利論壇在2005年所提出的切尔诺贝利事件報告中,共56人死亡(47名救災人員,9名罹患甲狀腺癌的兒童),並估算暴露在高度輻射線物質下的大約60萬人中,將額外有4,000人將死於癌症。此數據包括已診斷出的4,000名兒童甲狀腺癌將造成的死亡數字(依據白俄羅斯的經驗,存活率接近99%)。綠色和平組織所估計的總傷亡人數是93,000人,但引用在一份最新出爐的報告中的數據指出發生在白俄羅斯、俄羅斯及烏克蘭單獨事件在1990年到2004年間可能已經造成20萬起的額外死亡,但此數字來源並非來自經過同儕審查的學術論文。儘管疏散區域和某些限制地區還有些管制,但是大多數的受影響區域已經被認為可以安全地居住和進行經濟活動,針對此地附近的廢棄都市進行「輻射觀光」的金額還在逐步成長。.

新!!: 碱金属和切尔诺贝利核事故 · 查看更多 »

嵌入 (化學)

嵌入(英語:Intercalation,或譯插層)在化學上是指在兩個分子或基團之間加入一個分子,過程可逆。例如DNA嵌入與石墨层间化合物(graphite intercalation compound)。.

新!!: 碱金属和嵌入 (化學) · 查看更多 »

催化剂

催化劑又稱觸媒,是能透過提供另一活化能較低的反應途徑而加快化學反應速率,而本身的質量、組成和化學性質在參加化學反應前後保持不變的物質。例如二氧化錳可以作為過氧化氫(雙氧水)分解的催化劑。與催化劑相反,能減慢反應速率的物質稱為抑制劑。過去曾用的「負催化劑」一詞已不被國際純粹與應用化學聯合會所接受,而必須改用抑制劑一詞,催化劑一詞僅指能加快反應速率的物質。.

新!!: 碱金属和催化剂 · 查看更多 »

冠醚

冠醚是一种杂环有机化合物,包含有多个醚基团。最常见的冠醚就是乙撑氧的低聚物,其中重复的单位是乙烯氧基(-CH2CH2O- 可看作是环氧乙烷断裂碳氧键后的剩余基团)。这一系列中最重要的是四聚体、五聚体和六聚体。之所以用“冠”来命名,是因为就像皇冠可以戴在头上一样,冠醚能够和一个阳离子成键。在冠醚的命名法中,前面那个数字代表了环内的原子数,第二个数字代表氧的个数。冠醚的概念远远大于乙撑氧的低聚物,另外一个很重要的系列是鄰苯二酚的衍生物。 冠醚一般通过卤代烃与醇盐的威廉姆逊合成反应制取。.

新!!: 碱金属和冠醚 · 查看更多 »

冰晶石

冰晶石(英語:Cryolite)一种矿物,主要成分为六氟铝酸钠(Na3AlF6),白色单斜晶系(109摄氏度),微溶于水,能溶于氧化铝,在电解铝工业作助熔剂、制造乳白色玻璃和搪瓷的遮光剂。格陵蘭西海岸的伊維圖特(Ivigtût)是冰晶石的主要產地,此矿于1987年开采完毕。现时多以萤石人工合成六氟铝酸钠供工业使用。.

新!!: 碱金属和冰晶石 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: 碱金属和共价键 · 查看更多 »

元素

#重定向 化學元素.

新!!: 碱金属和元素 · 查看更多 »

元素周期律

-- 元素的物理、化學性質隨原子序數逐漸變化的規律叫做元素週期律。元素週期律由門德列夫(Dmitri Mendeleyev)首先發現,並根據此規律創制了元素週期表。 結合元素週期表,元素週期律可以表述為:.

新!!: 碱金属和元素周期律 · 查看更多 »

元素周期表

化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.

新!!: 碱金属和元素周期表 · 查看更多 »

光谱学

光谱学(Spectroscopy)是研究物质发射、吸收或散射的光、声或粒子来研究物质的方法。 光谱学也可以被定义为研究光和物质之间相互作用的学科。历史上,光谱学指用可见光来对物质结构的理论研究和定量和定性的分析的科学分支。但是,近来,光谱学的定义已经被扩展为一种不只用可见光,也用许多其他电磁或非电磁辐射(如微波,无线电波,X射线,电子,声子(声波)等)的新技术。阻抗光谱学则研究交流电的频率响应。 光谱学被频繁的用在物理和分析化学中,通过发射或吸收光谱来鉴定物质。一种记录光谱的仪器叫分光计。光谱学可以通过其测量或计算的物理属性或测量过程来分类。 光谱学也同样大量运用在天文学和遥感。大多数大型天文望远镜配有光谱摄制仪,用来测量天体的化学组成和物理属性,或通过测量光谱线的多普勒偏移来测量天体的速度。.

新!!: 碱金属和光谱学 · 查看更多 »

国际原子能机构

国际原子能机构(International Atomic Energy Agency,IAEA)成立於1957年7月29日,是一個的國際組織,致力推廣以和平方式使用核能,並禁止將其用於任何軍事目的,包括核武器。國際原子能機構是1957年7月29日成立的一個自治組織。雖然是通過自己的國際條約《國際原子能機構規約》(the IAEA Statute),獨立於聯合國而設立的,但是國際原子能機構報告给聯合國大會和安理會。 該機構在2005年10月6日因“防止核能被用于军事目的,并确保最安全的和平利用核能”而獲得諾貝爾和平獎。.

新!!: 碱金属和国际原子能机构 · 查看更多 »

国际科学技术数据委员会

#重定向 科学技术数据委员会.

新!!: 碱金属和国际科学技术数据委员会 · 查看更多 »

四苯硼钠

四苯硼钠(化学式:NaB(C6H5)4),白色晶体,是分析化学常用试剂之一。可溶于水、甲醇、丙酮和乙醇,微溶于氯仿和乙醚。用作制取其他四苯硼化物的原料、钾离子的沉淀剂和鉴定试剂、碳酸酯的缩聚催化剂及有机合成和配位化学试剂等。.

新!!: 碱金属和四苯硼钠 · 查看更多 »

皮米

米(符號 pm,picometre、)是长度单位,1皮米相当于1米的一兆(即一萬億)分之一, 即10-12米。有时在原子物理学中称为微微米(micromicron).

新!!: 碱金属和皮米 · 查看更多 »

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

新!!: 碱金属和皇家天文學會月報 · 查看更多 »

石墨

石墨(Graphite),又稱黑鉛(Black Lead),是碳的一種同素異形體(碳的其他同素異形體有很多,為人熟悉的例如鑽石)。作为最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散佈在變質岩(由煤、碳質岩石或碳質沉積物,受到區域變質作用或是岩漿侵入作用形成)之中。化学性质不活泼,具有耐腐蚀性。.

新!!: 碱金属和石墨 · 查看更多 »

石墨层间化合物

石墨层间化合物(Graphite intercalation compound,缩写GIC)又称石墨插层化合物、石墨插层复合物,是由带正电或负电的离子插入被氧化或还原的石墨层间后形成的具有二维层状结构的化合物,通式为MCx·δS。式中M表示插入石墨层间的带电荷离子、S为可能存在的与离子共插层的电中性溶剂分子。.

新!!: 碱金属和石墨层间化合物 · 查看更多 »

矽酸鹽

化學上,矽酸鹽指由矽和氧組成的化合物(SixOy),有時亦包括一或多種金屬和或氫。它亦用以表示由二氧化矽或矽酸產生的鹽。 在普通情況下,最穩定的矽化合物是二氧化矽(SiO2)——俗稱石英,和類似的化合物。二氧化矽經常有微量的矽酸(H4SiO4)處於平衡狀態。化學家認為石英是不可溶解的,但在長時間尺度下,它是可以流動的。此外,在鹼性條件下,會出現H2SiO42−。大部分矽酸鹽都是不可溶解的。 矽酸鹽礦物的特徵是它們的正四面體結構,有時這些正四面體以錬狀、雙鍊狀、片狀、三維架狀方式連結起來。按正四面體聚合的程度,矽酸鹽再細分為:島狀矽酸鹽類、環狀矽酸鹽類等。 在地質學和天文學上,矽酸鹽指一種由矽和氧組成的岩石(通常為SiO2或SiO4),有時亦包括一或多種金屬和或氫。此類岩石包括花崗岩及輝長岩等。地球及其他類地行星的大部分地殼均以矽酸鹽組成。.

新!!: 碱金属和矽酸鹽 · 查看更多 »

是具有A1+M3+(SO42-)2·12H2O通式的一类複鹽,并通常带有结晶水。例如明矾为KAl(SO4)2·12H2O。 但是不只礬類名稱帶有礬,.

新!!: 碱金属和矾 · 查看更多 »

矿物油

矿物油(或石蜡油)指的是从矿物源、特别是石油分馏物中提取的任何一种无色无臭的高级烷烃。 「矿物油」这个名字其实并不准确,在过去曾经被用于描述某些具体的油。「白油」、「液态石蜡」、「液态石油」等称谓同样不精确。 通常,矿物油是通过分馏石油以及石油原料制造汽油过程中的副产品。矿物油是透明的,无色的,主要由烷烃、环状石蜡(与凡士林有关)构成。矿物油的可以分为轻、重等级,其密度大约为0.8 g/cm3。 矿物油的产量非常大,价格较低,常在药店出售。 提炼后的矿物油分为三类:.

新!!: 碱金属和矿物油 · 查看更多 »

环戊二烯基钠

环戊二烯基钠是一种有机钠化合物,化学式为C5H5Na。通常简称为NaCp或CpNa,其中Cp−是环戊二烯阴离子。在配位化学中,Cp也作为环戊二烯基配体的缩写。.

新!!: 碱金属和环戊二烯基钠 · 查看更多 »

砷,化学元素符号为As,原子序数为33。砷分布在多种矿物中,通常与硫和其它金属元素共存,也有纯的元素晶体。艾尔伯图斯·麦格努斯在1250年首次对砷进行了记载。砷是一种非金属元素。单质以灰砷、黑砷和黄砷这三种同素异形体的形式存在,但只有灰砷在工业上具有重要的用途。 砷可用于合金的制造,比如生产铜的强化合金或是添加到制造车用铅酸蓄电池的合金中。制造半导体电子器件时用砷作为掺杂剂合成n形半导体材料,掺杂了硅的光电子化合物砷化镓是在使用中最常见的半导体。砷和它的化合物,特别是三氧化二砷(砒霜)用于合成农药(用于处理木材产品)、除草剂和杀虫剂。但这些方面的应用正在逐渐消失。 虽然有少数几种细菌是能够将砷化合物作为呼吸代谢物的,但是对于多细胞生物而言砷是有毒物质。受砷污染的地下水是影响全世界几百万人的环境问题。.

新!!: 碱金属和砷 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

新!!: 碱金属和硫 · 查看更多 »

硫化钠

硫化钠是一个无机盐类,化学式为Na2S,通常以九水合物Na2S·9H2O的形式存在。无水物和九水物都是无色可溶的固体,在水溶液中水解呈强碱性。露置在空气中时,硫化钠会放出有臭鸡蛋气味的有毒硫化氢气体。.

新!!: 碱金属和硫化钠 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 碱金属和硫酸 · 查看更多 »

硫酸鹽

硫酸盐,由硫酸根离子()与其他金属离子组成的化合物,幾乎都是电解质,且大多数溶于水。.

新!!: 碱金属和硫酸鹽 · 查看更多 »

(Boron)是一种化学元素,化学符号为B,原子序数为5,是一种類金属。由於硼的產生完全來自于宇宙射線散裂而非恆星核合成反應,硼在太陽系與地殼的含量相當稀少。天然的硼主要存在于硼砂()矿中。.

新!!: 碱金属和硼 · 查看更多 »

硼族元素

族元素是元素周期表的第13族元素(IIIA 族),位于锌族元素和碳族元素之间,包括的元素有:.

新!!: 碱金属和硼族元素 · 查看更多 »

是化学元素,化学符号是Se,原子序数是34,是非金属。 硒對生物來說是必需,但同時也有毒性。硒的性质与硫及碲相似;在有光时,导电性能较黑暗时好,故可用来做光电池。.

新!!: 碱金属和硒 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 碱金属和硅 · 查看更多 »

在各种酸碱理论中,碱都是指与酸相对的一类物质。鹼多指鹼金屬及鹼土金屬的氢氧化物,而对碱最常见的定义是根据阿伦尼乌斯(Arrhenius)提出的酸碱离子理论作出的定义:碱是一种在水溶液中可以电离出氢氧根离子并且不产生其它阴离子的化合物。随后这个定义被扩展为提供氢氧根或者吸收氢离子的化合物。 根据不同的酸碱理论,碱有着不同的定义。.

新!!: 碱金属和碱 · 查看更多 »

碱土金属

碱土金属指的是元素週期表上第 2 族(ⅡA族)的六个金属元素,包括鈹、鎂、鈣、鍶、鋇 和放射性元素鐳。 鹼土金屬都是銀白色的,比較軟的金屬,密度比較小。鹼土金屬在化合物中是以+2的氧化態存在。鹼土金屬原子失去電子變為陽離子時,最外層一般是8個電子,但铍離子最外層只有2個電子。 碱土金属具有很好的延展性、可以制成许多合金、如鎂鋁合金。 碱土金属都是活泼金属。.

新!!: 碱金属和碱土金属 · 查看更多 »

(),是化学元素,化学符号是Te,原子序数是52,是银白色的类金属。 碲的化学性质与硒及硫类似。主要用作合金及半导体。碲化铋用作热电装置中。 碲-128及碲-130是最常见的碲同位素,但它们都有微弱的放射性。 碲是制造碲化镉太阳能薄膜电池的主要原料。 碲矿资源分布稀散,多伴生在其它矿物中或以杂质形式存在于其它矿中。中国四川石棉县大水沟碲矿是至今发现的唯一碲独立矿床。.

新!!: 碱金属和碲 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 碱金属和碳 · 查看更多 »

碳负离子

碳负离子(Carbanion),又叫碳陰離子,指的是含有一个连有三个基团,并且带有一对孤对电子的碳。碳负离子带有一个孤立负电荷,通常是三角椎體构型,其中孤对电子占一个sp3混成轨道。形式上,碳陰離子是含碳酸的共軛鹼: 上式的B表示鹼。而碳陰離子在有機反應中扮演中間物的角色。.

新!!: 碱金属和碳负离子 · 查看更多 »

碳酸盐

碳酸盐是由碳酸根离子(CO32−)与其他金属离子组成的化合物,都是电解质除了CaCO3。 碳酸盐有正盐和酸式盐之分,通常是指碳酸正盐,正盐如碳酸钠、碳酸钙、碳酸钾等,在自然界分布极广泛,除碱金属碳酸盐及碳酸铵易溶于水外,其他碳酸盐仅微溶于水。 碳酸盐溶液中通入CO2得酸式碳酸盐;甚至微溶的碳酸盐在水中通入CO2,也将转化为可溶性的酸式碳酸盐。例如:碳酸钙在水中通入CO2即转化为酸式碳酸钙而溶解;酸式碳酸盐也叫碳酸氢盐或重碳酸盐;加热即放出CO2而成碳酸正盐,加热到更高温度进一步分解为CO2和金属氧化物。 此外还有碱式碳酸盐,如碱式碳酸铜、碱式碳酸铅等,也可以当作是另一类型的碳酸盐。.

新!!: 碱金属和碳酸盐 · 查看更多 »

碳酸钠

碳酸钠(),俗名苏打(soda)、纯碱(soda ash 、soda crystals)、洗滌鹼(washing soda),生活中亦常称“碱”。化学式:Na2CO3,普通情况下为白色粉末,为强电解质。密度为2.532g/cm3,熔点为850℃,易溶于水,具有盐的通性。.

新!!: 碱金属和碳酸钠 · 查看更多 »

碳酸锂

碳酸锂(Li2CO3)是一種无色至白色结晶,能溶于水,但溶解性不佳。用于治疗精神疾病,多用於躁狂症的治療。.

新!!: 碱金属和碳酸锂 · 查看更多 »

碳族元素

碳族元素是元素周期表的ⅣA族元素(IUPAC新规定:14族),位于硼族元素和氮族元素之间,包括的元素有碳(C)、 硅(Si)、锗(Ge)、锡(Sn)、铅(Pb)、鈇(Fl)。 这一族元素在化合物中一般可以呈现+4,+2等化合价,他们的原子最外层都有4个电子。最高正价都是+4价。.

新!!: 碱金属和碳族元素 · 查看更多 »

是卤族化学元素,化学符号是I,原子序数是53。.

新!!: 碱金属和碘 · 查看更多 »

碘-131

-131(Iodine-131),也称放射碘(Radioiodine),是碘的一种同位素。原子核内有78个中子,比碘的稳定性核素原子核的中子数多4个。碘-131是人工核裂变产物,正常情况下在自然界中不会存在,摄入人体后,会积聚在甲状腺处对人体造成危害。因此各國會針對核能電廠周邊住民發放或儲備碘片(碘化鉀),核災發生後遭受游離碘輻射暴露時,於4小時內服用可使碘在甲狀腺裡飽和,減少甲狀腺對放射性碘-131的吸收。.

新!!: 碱金属和碘-131 · 查看更多 »

碘化锂

化锂(化学式:LiI)是锂的碘化物,为易潮解的白色晶体,露置于空气时易被氧化为碘而发黄。硝酸、硫酸或盐酸也可以将碘化锂溶液氧化出碘。它易溶于水,可以从水溶液中析出多种水合物。无水物会和碘继续反应生成LiIn多碘化物,也可以和氯气反应生成混合卤化物。 工业上和实验室中制备碘化锂都是将碳酸锂或氢氧化锂水合物溶解在新制的氢碘酸中,然后蒸发浓缩溶液得到晶体。也可以利用碘化铵与锂在液氨中的反应得到碘化锂,其他产物是氨和氢气。 纯化碘化锂时,可以将水合物于真空加热干燥脱水、升华,也可以将水合物放在碘化氢气氛中干燥,加热至熔融并通入氢气,以除去碘化氢遗留下的碘。 碘化锂用作高温和长寿命电池中的电解质,也用于烃类的催化脱氢反应中。.

新!!: 碱金属和碘化锂 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

新!!: 碱金属和磷 · 查看更多 »

福岛第一核电站事故

福島第一核電廠事故()是位於日本福島縣海濱的福島第一核電廠,因2011年3月11日發生的東日本大震災所引起的一系列設備損毀、爐心熔毀、輻射釋放等核能災害事件,為全球自1986年車諾比核電廠事故以來最嚴重的核能事故,也是第二起在國際核事件分級表中被評為第7級(最嚴重等級)的核電廠事故。但事故後無人因輻射曝露而死亡。世界衛生組織也指出事件後出生的胎兒出現流產、死胎、身體及精神疾病的機率不會增加。約1300人在地震後因為病情惡化或身體狀況變差而死去。.

新!!: 碱金属和福岛第一核电站事故 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 碱金属和离子 · 查看更多 »

离子半径

离子半径(rion)是对晶格中离子的大小的一种量度。离子半径通常以皮米(pm)或埃(Å,1Å.

新!!: 碱金属和离子半径 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

新!!: 碱金属和离子键 · 查看更多 »

离子晶体

离子晶体指的是内部的离子由离子键互相结合的固态物质。.

新!!: 碱金属和离子晶体 · 查看更多 »

稳定同位素

稳定同位素(Stable isotope),是指化學元素中,不发生放射性衰变或不易发生放射性衰变的同位素,稳定同位素即使會发生衰变,因半衰期太长而无法测量出。 所有同位素中,只有前66個元素中的146個同位素(最重的為鏑164)理論上不會發生放射性衰變(不考慮尚未證實的質子衰變),另外有108個理論上會發生某種放射性衰變(α衰變、β衰變或電子捕獲),但尚無法證實其放射性(其中最輕的為氬36)。因此已知的稳定同位素共有254個,分佈在80個化學元素中。 在這80種有稳定同位素的元素中,有26個元素只存在一種稳定同位素,因此稱為单一同位素元素,其他的元素則有不止一種的稳定同位素,其中錫有10種稳定同位素,是具有最多種稳定同位素的元素。.

新!!: 碱金属和稳定同位素 · 查看更多 »

稀有元素

有元素是自然界中储量、分布稀少(一般地壳丰度为100ppm以下)且人类应用较少的元素总称。稀有元素常用来制造特种金属材料,如特种钢、合金等,在飞机、火箭、原子能等工业领域属于关键性材料。常用的稀有金属有锂、钛、镭等。.

新!!: 碱金属和稀有元素 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

新!!: 碱金属和稀有气体 · 查看更多 »

穴状配体

醚是一类人工合成的,可以与阳离子发生配位的双环和多环多齿配体。“穴醚(cryptand)”一词是指该配体形如空穴,将底物分子容纳在里面。整个分子是一个三维的结构。因此与单环的冠醚相比,穴醚配合物更加稳定,对底物分子的选择性也更强。形成的复合物具有脂溶性。唐纳德·克拉姆、让-马里·莱恩和查尔斯·佩特森通过对穴醚和冠醚进行研究,开创了超分子化学的先例,并因此获得了1987年的诺贝尔化学奖。.

新!!: 碱金属和穴状配体 · 查看更多 »

第8周期元素

8週期元素指的是擴展元素週期表中第8週期中50個假想化學元素中的任何一個。它們根據IUPAC元素系統命名法命名。這些元素都仍未被發現或合成,目前已合成的最重的元素為Og,原子序為118,是第7週期元素中的最後一個。它們的同位素可能都太不穩定,近期都不一定會有重要性。有可能由於滴線不穩定性,只有較前的第8週期元素能夠存在,而週期表會在穩定島後的Ubh(原子序126)處終結。 如果能夠製造足夠的這些元素並能研究它們的化學特性,其屬性可能和先前週期的元素截然不同。這是因為其電子排佈可能因量子效應和相對論性效應而改變。由於5g、6f和7d原子軌道的能級十分接近,使得它們可以互相交換電子。這會導致一系列的超錒系元素擁有非常相近的化學屬性,並和前面的週期中的元素毫不相關。.

新!!: 碱金属和第8周期元素 · 查看更多 »

精神病学

精神醫學目前是一門醫學專科,內容是關於心智及精神疾病的預防、甚至壽命。精神疾患因為容易慢性化及復發,患者常需要長期或終生接受治療。如何採取有效的治療,常因不同的患者及情境而有不同的考量。 在中文裡,醫療院所中的精神科也可能會被稱身心科、身心醫學科;然而在德國,身心科與精神科則屬於兩種不同疾患。而兒童精神科也可能被稱兒童心智科或兒童心理科。 精神醫學與神經醫學從數十年前分開,神經醫學處理如中風等腦部疾患,精神醫學則治療心智疾患(mental illness);隨著神經科學進展,這兩個研究中樞神經疾病的臨床範圍於近年互有涵蓋。.

新!!: 碱金属和精神病学 · 查看更多 »

紫丁香色

紫丁香是比紫罗兰的暗一点的颜色,可以描述为淡紫色。实际上一些丁香科植物的花的颜色要更深一些,相当于颜色"深紫丁香"。含鉀離子的鹽在本生燈燃燒下會有紫丁香色的火焰。 紅色.

新!!: 碱金属和紫丁香色 · 查看更多 »

约旦

约旦哈希姆王国(阿拉伯语:,一般通稱約旦)是中东的国家,它北临叙利亚,东临伊拉克,东南临沙特阿拉伯,西临以色列和巴勒斯坦。.

新!!: 碱金属和约旦 · 查看更多 »

纯粹与应用化学

纯粹与应用化学(Pure and Applied Chemistry,缩写:Pure Appl.

新!!: 碱金属和纯粹与应用化学 · 查看更多 »

经济学人

《經濟學人》(The Economist)是一份英國的英文新聞週報,分八個版本面向全球發行,其編輯部位於倫敦。它在1843年9月由詹姆士·威爾遜創辦。在創辦之初,《經濟學人》以報紙版式發行;時至今日,儘管它已經採用小開本、光面紙的雜誌版式出版,但它依然沿用舊時的習慣,將自己稱為「報紙」。2017年上半年,《經濟學人》實體和數字刊物的平均每周發行量合共達到144萬份,其中近六成發行量位於北美地區。 《經濟學人》歸經濟學人集團所有。後者的股權中有50%由包括報社編輯和職員在內的私人投資者持有,餘下50%由英國罗斯柴尔德家族和意大利阿涅利家族分別直接或通過控股公司持有,二者在集團董事會均有代理人。集團曾經的主要股東還包括培生集團。在2016-2017財年,經濟學人集團的經營利潤達到5600萬英鎊。《經濟學人》主編的任命和解任均由集團下設的理事會負責。報社有大約100名僱員,其中約三分之二在倫敦西敏市的總部辦公,其餘則被派駐在全球近20個國家的編輯部。 雖然刊名為「經濟學人」(英文名The Economist為「經濟學家」之義),但《經濟學人》並非專門研究經濟學,也不是學術期刊,而是一本涉及全球政治、經濟、文化、科技等多方面事務的綜合性新聞評論刊物,著重於對這些議題提供深入的分析和評論。它的社論持有古典自由主義與經濟自由主義的立場,傾向於支持自由貿易、全球化、和社會自由主義(例如支持同性婚姻合法化)。它曾將自己形容為「亞當·斯密與大衛·休謨的蘇格蘭式自由主義的產物」。它面向教育程度較高的人羣,讀者中包括諸多具有影響力的高管和決策者。21世紀以來,儘管《時代》、《福布斯》、《新聞週刊》等諸多同類英文新聞雜誌的發行量均陷入停滯或出現下滑,但《經濟學人》的發行量和廣告業績卻有顯著增加。這一讀者閱讀習慣的變化被經濟學人集團的前-zh-cn:首席执行官;zh-hk:行政總裁;zh-tw:執行長-安德鲁·拉什巴斯(Andrew Rashbass)形容為「大眾智慧」(Mass Intelligence)時代的來臨。.

新!!: 碱金属和经济学人 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 碱金属和细胞 · 查看更多 »

细胞膜

细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.

新!!: 碱金属和细胞膜 · 查看更多 »

置换反应

置換反應又稱單置換反應,是指一種元素或化合物的離子根與一種離子化合物發生的反應,狹義氧化還原反應是置換反應的一種,且必為廣義的氧化還原反應。在反應中,關鍵在於還原性或氧化性的強弱,還原性或氧化性強的物質與相對較弱的物質進行置換。置换反应是无机化学反应的基本类型之一,指一种单质和一种化合物生成另一种单质和另一种化合物的反应。 一个简单的置换反应例子 铁 + 硫酸铜 → 铜 + 硫酸亚铁 上面是一个置换反应的例子,反应前后各元素氧化態可能改变。 在置換反應中,只會有正離子或負離子的其中一方進行置換,沒有進行反應的離子為旁觀離子。上面的例子中硫酸根為旁觀離子。.

新!!: 碱金属和置换反应 · 查看更多 »

美國地質調查局

美國地質調查局(United States Geological Survey,縮寫:USGS)是美國內政部轄下的科學機構,是內政部唯一一個純粹的科學部門,有約一萬名人員,總部設在弗吉尼亚州里斯頓,在科羅拉多州丹佛和加利福尼亚州门洛帕克設有辦事處。 美國地質調查局的科學家主要研究美國的地形、自然資源和自然災害與其的應付方法;負責四大科學範疇:生物學、地理學、地質學和水文學。.

新!!: 碱金属和美國地質調查局 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

新!!: 碱金属和美国 · 查看更多 »

美国化学会志

《美国化学会志》(Journal of the American Chemical Society,或譯美國化學會期刊、美國化學學會期刊),常用缩写为J.

新!!: 碱金属和美国化学会志 · 查看更多 »

美国国家学院

美国国家学院(英语:United States National Academies),是美国最高学术团体的总和,对美国及世界的科学研究、技术创新、和科学技术政策具有广泛影响力。 美国国家学院也被译为美国国家学术院,或美国国家四大学院。四大学院分别为:.

新!!: 碱金属和美国国家学院 · 查看更多 »

烟火

烟火,又称烟花、花火、焰火,是一種以火藥和金屬的粉末製成的物體,以火點燃後會燃燒、爆炸並綻放出聲音和五顏六色的光線,通常在戶外使用。.

新!!: 碱金属和烟火 · 查看更多 »

痕量同位素

痕量同位素是微量的自然放射性同位素。一般来说,痕量同位素的半衰期比地球的年龄短,由于原始核素往往大于微量。微量放射性同位素的存在是因为他们产生了地球上的自然过程。.

新!!: 碱金属和痕量同位素 · 查看更多 »

痕量放射同位素

#重定向 痕量同位素.

新!!: 碱金属和痕量放射同位素 · 查看更多 »

甲基锂

基锂是一个有机锂试剂,化学式为CH3Li。这种s区的有机金属化合物无论在固体或溶液中都是低聚态。这种高活性的化合物经常用于合成醚,并用于有机合成和有机金属化学。涉及到它的反应需要在无水条件下进行,因为它与水剧烈反应。氧气和二氧化碳也不能与它共存。因此甲基锂使用前通常不事先制备,但可以溶解在各种醚溶液中储存。.

新!!: 碱金属和甲基锂 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 碱金属和电子 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 碱金属和电子亲合能 · 查看更多 »

电子盐

电子盐、电子化合物是一类新型的化合物,其中以电子作阴离子。 第一个研究的电子盐是碱金属的液氨溶液。 比如,钠溶于液氨时,会生成含有+及溶剂合电子的蓝色溶液。此类溶液是强还原剂,可以用于Birch还原芳香化合物,放置时氨会被电子还原,逐渐生成金属氨基盐: +e−中加入2.2.2-穴醚生成+e−溶液,蒸发得到蓝黑色顺磁性的盐类,化学式为+e−,于240K以上分解。这些盐属于莫特绝缘体,电子在阳离子之间离域。 又如金属钠在一定量的二苯并-18-冠-6中的溶解度可以达到0.21mol/L,成为电解质溶液。以钠为电极电解可得钠的电子盐,反应方程式如下 Na(s)+nL ↔Na+(L)+e-(溶剂化) ↔+-(电子盐).

新!!: 碱金属和电子盐 · 查看更多 »

电子排布

電子排序,即電子組態,亦即電子構型,指電子在原子、分子或其他物理結構中的每一層電子層上的排序及排列形態。 正如其他基本粒子,電子遵從量子物理學,而不是一般的經典物理學;電子也因此有波粒二象性。而且,根據量子物理學中的《哥本哈根詮釋》,任一特定電子的確實位置是不會知道的(軌域及軌跡放到一旁不計),直至偵測活動進行使電子被偵測到。在空間中,該測量將會檢測的電子在某一特定點的概率,和在這一點上的波函數的絕對值的平方成正比。 電子能夠由發射或吸收一個量子的能量從一個能級跃迁到另一個能級,其形式是一個光子。由於泡利不相容原理,沒有兩個以上的電子可以存在於某個原子軌域(軌域不等於電子層);因此,一個電子只可跨越到另有空缺位置的軌域。 知道不同的原子的電子構型有助了解元素週期表中的元素的結構。這個概念也有用於描述約束原子的多個化學鍵。在散裝物料的研究中這一理念可以說明激光器和半導體的奇特性能。.

新!!: 碱金属和电子排布 · 查看更多 »

电离能

電離能(Ionization energy),或稱游離能、電離焓,常簡記為EI,指的是將一個電子自一個孤立的原子、離子或分子移至無限遠處所需的能量。更廣義的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推。 电离能的数值和原子的有效核电荷密切相关,也和原子大小、原子轨道中电子间的推斥作用等因素有关。 电离能是了解原子性质的重要数据。.

新!!: 碱金属和电离能 · 查看更多 »

电解

电解是指将電流通过电解质溶液或熔融态物质,而在阴極和阳极上引起氧化还原反应的过程。电化学电池在接受外加电压(即充电過程)时,會发生电解过程。所有離子化合物都是電解質,因為它們溶在液體中時,離子可以自由移動,所以可導電。.

新!!: 碱金属和电解 · 查看更多 »

电解质

电解质()是指在水溶液或熔融状态可以产生自由离子而导电的化合物。通常指在溶液中导电的物质,但熔融态及固态下导电的电解质也存在。这包括大多数可溶性盐、酸和碱。一些气体,例如氯化氢,在高温或低压的条件下也可以作为电解质。电解质通常分为强电解质和弱电解质。.

新!!: 碱金属和电解质 · 查看更多 »

电负性

电负性(electron negativity,簡寫EN),也譯作離子性、負電性及陰電性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。.

新!!: 碱金属和电负性 · 查看更多 »

焦耳每摩尔

耳每摩尔 (符号:J·mol-1)是国际单位制中表征每一定量物质能量的推导单位。能量以焦耳为单位,材料的量以摩尔为单位。 以J·mol-1为单位的物理量包括:.

新!!: 碱金属和焦耳每摩尔 · 查看更多 »

焰色反应

色反應,或稱作焰色測試及焰色試驗、焱色試驗,是化學上用來測試某種金屬是否存在在於化合物的方法,该反应为物理变化。 其原理是每種元素都有其個別的光譜。樣本通常是粉或小塊的形式。以一條清潔且對化學惰性的金屬線(例如鉑或鎳鉻合金)盛載樣本,再放到本生燈的無光焰(藍色火焰)中。 由於鈉的金黃色火焰容易蓋過其他金屬的焰色,所以常用觀察其他金屬的焰色。.

新!!: 碱金属和焰色反应 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 碱金属和熔点 · 查看更多 »

煤油

--(俗稱--,舊稱火油;美式英語:Kerosene;英式英語:paraffin)是一种通过对石油进行分馏后获得的碳氢化合物的混合物。由于煤油的组成成分可能不同,因此不同地方产的煤油的特征可能区分很大。比起汽油来,煤油比较粘稠,也比较不易燃。其闪点在55至100°C之间。煤油蒸汽比空气重得多,与空气混合可能形成爆炸气。在分馏石油时煤油的沸点在汽油和柴油之间,约在160至280°C。.

新!!: 碱金属和煤油 · 查看更多 »

物理年鑑

《物理年鑑》(Annalen der Physik),又譯《物理學年鑑》、《物理學記事》,是自1799年刊行至今的德國物理學期刊。期刊刊發实验物理、理论物理、应用物理、数学物理等相关领域的原创、经过同行评审的文章这是现在的事情。当年爱因斯坦的文就被普朗克直接拿去发表了-->。现任主编为Guido W. Fuchs。 本期刊是1790~1794年出版的《Journal der Physik》(《物理期刊》)和1795~1797年出版的《Neues Journal der Physik》(《物理新期刊》)的后继者http://www.physik.uni-augsburg.de/annalen/history/history.html。在历史上,本期刊曾经用过许多不同的名称——《物理年鉴》《物理和物理化学年鉴》《物理和化学年鉴》(Annalen der Physik, Annalen der Physik und der physikalischen Chemie, Annalen der Physik und Chemie)。.

新!!: 碱金属和物理年鑑 · 查看更多 »

物理评论快报

物理评论快报(Physical Review Letters ,有时缩写为PRL),也译作物理报导期刊、物理評論快訊,是一本声誉卓著的物理学期刊,自1958年起开始由美国物理学会出版。该刊是从物理评论延伸出来的刊物。 物理评论快报限定于短篇的文章,也称为报导(Letters)或快报、快訊,一篇文章最多只有4到5页长而已。.

新!!: 碱金属和物理评论快报 · 查看更多 »

盐酸

酸,學名氢氯酸(hydrochloric acid),是氯化氢(化学式:HCl)的水溶液,属于一元无机强酸,工业用途广泛。盐酸为无色透明液体,有强烈的刺鼻味,具有较高的腐蚀性。浓盐酸(质量百分濃度约为37%)具有极强的挥发性,因此盛有浓盐酸的容器打开后氯化氢气体会挥发,与空气中的水蒸气结合产生盐酸小液滴,使瓶口上方出现酸雾。盐酸是胃酸的主要成分,它能够促进食物消化、抵御微生物感染。 16世纪,利巴菲乌斯正式记载了纯净盐酸的制备方法:将浓硫酸与食盐混合加热。之后格劳勃、普利斯特里、戴维等化学家也在他们的研究中使用了盐酸。 工业革命期间,盐酸开始大量生产。化学工业中,盐酸有许多重要应用,对产品的质量起决定性作用。盐酸可用于酸洗钢材,也是大规模制备许多无机、有机化合物所需的化学试剂,例如聚氯乙烯的前体氯乙烯。盐酸还有许多小规模的用途,比如用于家务清洁、生产明胶及其他食品添加剂、除水垢试剂、皮革加工。全球每年生产约两千万吨的盐酸。.

新!!: 碱金属和盐酸 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

新!!: 碱金属和相对论 · 查看更多 »

相对论量子化学

对论量子化学是指同時使用量子化学和相对论力学来解释元素的性质与结构的方法,特别是對於元素周期表中的重元素。 早期量子力学的发展并不考虑相对论的影响,因此人們通常认为“相对论效应”是指由于计算没有考虑相对论而与真实值產生差异或甚至矛盾。本文中的重元素指的是元素周期表中原子序数较大的元素。由於質量較大的緣故,相对论对它们的影响是不可忽略的。典型的重元素包括镧系元素和锕系元素等。 在化学中,相对论效应可以视为非相对论理论的微扰或微小修正,这可以从薛定谔方程推导获得。这些修正对原子中不同原子轨道上的电子具有不同的影响,这取决于这些电子的速度与光速的相对差别。相对论效应在重元素更加显著,这是由于只有这些元素中的电子速度能与光速相比拟。.

新!!: 碱金属和相对论量子化学 · 查看更多 »

相變

變(Phase Change)是指物質在外部參數(如:溫度、壓力、磁場等等)連續變化之下,從一種相(態)忽然變成另一種相,最常見的是冰變成水和水變成蒸氣。然而,除了物體的三相變化(固態、液態、氣態)自然界還存在許許多多的相變現象,例如日常生活中另一種較常見的相變是加熱一塊磁鐵,磁鐵的鐵磁性忽然消失。其他在物理學中重要相變列舉如下:.

新!!: 碱金属和相變 · 查看更多 »

白俄罗斯

白俄罗斯共和国(translit;;bʲɪlɐˈrusʲ ),通称白俄罗斯,或稱白羅斯,是位于东欧的内陆国家,首都為明斯克,於1991年8月25日從苏联独立,於同年12月19日改稱“白俄罗斯共和国”。白俄罗斯东及北部与俄罗斯联邦为邻,南部与乌克兰接壤,西部同波兰、立陶宛和拉脱维亚毗邻,国土面积達207,600平方公里,人口達968.98万人(2008年) ,大部分居住在明斯克或者其他大城市附近,將近80%人口為土生土長的白俄羅斯人,主要少數民族依次是俄羅斯人、波蘭人和烏克蘭人。1995年後,白俄羅斯語和俄羅斯語被設為官方語言。白俄羅斯憲法並無明確規定國教,大多數人信仰俄羅斯東正教,其次則為羅馬天主教,而基督宗教的不少節日(如復活節等)也被設為國定假日。.

新!!: 碱金属和白俄罗斯 · 查看更多 »

百萬分率

萬分率(parts per million,缩写作ppm),定義為百萬分之一,1ppm即是一百萬分之一。.

新!!: 碱金属和百萬分率 · 查看更多 »

Eka

Eka是一个用来为在元素周期表中位于某个元素下面的位置的化学元素命名的前缀。 前缀eka-尤其用于命名尚未发现的元素。 例如,在发现锗以前它被称为硅下元素(eka-硅,ekasilicon)。 该前缀起源于意为“一”的梵语词"eka",季米特里·门捷列夫杜撰了这个前缀。 相应地,前缀dvi-和tri-源于意为“二”和“三”的梵语前缀,用于命名前缀后面的基元素在元素周期表中下面第二行和第三行处空位所表示的未知元素。 现在国际理论与应用化学联合会使用基于原子序数的元素系统命名法作为元素临时命名的正式惯例,而不使用用这些前缀表示时必须要基于元素在元素周期表中的排列位置的方式。 据推测通常用来表示梵语字音表的表格结构和元素周期表之间的相似性导致门捷列夫选择了梵语词作为这些前缀的词基。 Category:化学元素 Category:前綴.

新!!: 碱金属和Eka · 查看更多 »

銣的同位素

銣(,原子質量單位:85.4678(3))共有45個同位素,不包括核同质异能素共有32種,其中有2個天然存在,但只有一種同位素是穩定的,除了和之外,還有24種人工合成的放射性同位素。它們的半衰期都在3個月以內,因此幾乎沒有應用價值。 天然的銣元素中,含有兩種銣的同位素,其中佔72.2%、佔27.8%,具有微弱的放射性,其半衰期超過1010年,但這樣的放射強度足以在30至60天使相機底片霧化或曝光並留下影像。 在銣的同位素中,質量數少於的多半進行质子发射衰變、至則進行正電子發射,其中有少數的會進行α衰變,更重的同位素則都進行貝他衰變,但有少部分會伴隨中子發射衰變。.

新!!: 碱金属和銣的同位素 · 查看更多 »

銫的同位素

銫(原子量:132.9054519(2))銫有40個已知的同位素,連同鋇與汞是擁有最多同位素的元素。目前已知的銫同位素園子量範圍從112到151,其中只有銫-133是穩定的。壽命最長的放射性銫是銫-135,半衰期有230萬年。其次是銫-137,半衰期約30年,以及銫-134有兩年的半衰期,其他的同位素半衰期皆低於兩周,大部分的都在一小時以下。其中一些同位素在年老的恆星中由較輕的元素通過捕獲慢中子(S-過程)合成,也可以在超新星爆發的過程R-過程中合成.

新!!: 碱金属和銫的同位素 · 查看更多 »

银(silver)是一种化学元素,化学符号Ag(来自argentum),原子序数47。银是一种柔软有白色光泽的过渡金属,在所有金属中导电率、导热率和反射率最高。銀在自然界中的存在方式有纯净的游离态单质(自然银),与金等其他金属的合金,还有含银矿石(如辉银矿和角银矿)。大部分银都是精炼铜、金、铅和锌的副产品。 银不易受化學藥品腐蝕,长久以来被视为贵金属。银比金来源更丰富,在现代以前的货币体系中作为硬币使用,有时甚至和金一道使用。除了货币之外,银的用途还有太阳能电池板、净水器、珠宝和装饰品、高价餐具和器皿(银器),银币和还可用于投资。银在工业上用于和导体、特制镜子、窗膜和化学反应的催化剂。银的化合物用于胶片和X光。稀硝酸银溶液等银化合物会产生,可以消毒和消灭微生物,用于绷带、伤口敷料、导管等医疗器械。.

新!!: 碱金属和銀 · 查看更多 »

靶恩

靶恩(符號為b,也簡稱為靶)是一種面積單位,原先用於核物理中描述原子核及核反應的截面,今天則用於所有高能物理學領域中描述任何散射過程的截面,並通常能代表細小粒子發生相互作用的機率。一個靶恩的定義為10−28 m2(100 fm2),大約為一個鈾原子核的截面面積。靶恩也在核四極共振和核磁共振中用作面積單位,量化核子與電場斜率之間的交互作用。雖然靶恩並不是國際單位制單位,但由於長期使用於粒子物理學而被承認。 它是國際單位制所接受的少數單位之一,也是最近期被承認的(節和巴是其他可接受有限使用的非國際單位制單位)。.

新!!: 碱金属和靶恩 · 查看更多 »

衰變鏈

核科學裡,衰變鏈指的是放射性衰變過程中成鏈產生的一系列衰變產物。大部分放射性元素並不直接衰變成穩定的狀態,而是經過一連串的衰變反應,最終達至穩定的同位素為止。 衰變階段的名稱取決於它與前後階段的關係。“母同位素”衰變後產生“子同位素”。子同位素有可能是穩定的,但也可以繼續衰變形成下一個子同位素。子同位素的子同位素稱為第二代子同位素。 單獨一個母原子衰變成一個子原子的時間不定,不但在不同的母子原子對中有所不同,而且在同一種母子衰變反應中也有差異。單個原子的衰變是瞬時發生的,但是最初一堆原子在經過時間t後的衰變則由指數分布e−λt表示,當中的λ稱為衰變常數。正因為衰變的指數特徵,因此每一種同位素都有其半衰期。起初一定數量的相同放射性同位素在經過半衰期後,其中的一半會衰變成子同位素。實驗已經測定了數千種放射性同位素(或放射性核素)的半衰期,從幾乎馬上衰變到1019年以上不等。 中間的衰變階段往往比最初放射性同位素的衰變具有更強的放射性。當達至平衡之後,第二代子同位素的量與其半衰期成正比。不過由於其活躍性與半衰期成反比,任何在衰變鏈中的核素最終都會達到母同位素的放射水平。例如,自然鈾的放射性並不特別高,但是瀝青鈾礦的放射性卻是它的13倍,因為礦中還包含鐳和其他子同位素。除了鐳明顯較高的放射性之外,衰變鏈中的下一步會產生氡。氡是一種放射性的重惰性氣體,會囤積在含有釷或鈾的岩石附近的空隙裡,如地下室和礦井裡。長期接觸氡氣是導致非吸煙者患上肺癌的最主要原因。.

新!!: 碱金属和衰變鏈 · 查看更多 »

食盐

食鹽是一種調味劑,能产生人类能感知的鹹味,常在烹飪和享用食物時用作調味。常見的餐桌鹽是一種含有97至99%的氯化钠的精製鹽.

新!!: 碱金属和食盐 · 查看更多 »

角闪石

角闪石是角闪石系列矿物的总称,根据其晶体结构可以被分为斜方角闪石和单斜角闪石两种。角闪石是含有氢氧根的链状结构硅酸盐。.

新!!: 碱金属和角闪石 · 查看更多 »

體積莫爾濃度

#重定向 體積莫耳濃度.

新!!: 碱金属和體積莫爾濃度 · 查看更多 »

負離子

負離子可能是指:.

新!!: 碱金属和負離子 · 查看更多 »

超重元素

超重元素是指原子序数超过103或105的元素,103号元素为铹,105号元素为𨧀。这些元素均为人工合成元素,具有放射性,并且稳定性较差。.

新!!: 碱金属和超重元素 · 查看更多 »

超氧化物

超氧化物(Superoxide)是含有超氧离子(超氧根离子,O2−)的一类化合物,是氧气分子的单电子还原产物,广泛存在于自然界中。超氧离子是一个自由基,一个氧原子带有一个未成对电子,与氧气分子一样呈顺磁性。.

新!!: 碱金属和超氧化物 · 查看更多 »

超氧化钾

超氧化钾,分子式KO2,是一级氧化剂,与水剧烈反应。超氧化钾是由K+和O2−组成的碳化钙型粉末状晶体。有吸湿性、顺磁性。.

新!!: 碱金属和超氧化钾 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 碱金属和超新星 · 查看更多 »

鹼化物

化物是含有鹼金屬元素陰離子的化合物。例如+Na− 中有一個鈉的陰離子,即為鹼化物。第一個鹼化物出現在1970年代,目前也己發現含有鉀、銣、銫陰離子的鹼化物。 鹼化物相當特殊,因為以往認為鹼金屬元素在化合物中只會以陽離子的方式存在,而且鹼金屬元素陰離子的活性相當強,可以打破大部份的共價鍵。在鹼化物中使用了特殊的穴醚來隔離鹼金屬陰離子,因此才能在室溫下穩定存在。 鹼化物與電子鹽有相似的化學性質。.

新!!: 碱金属和鹼化物 · 查看更多 »

鹽田

鹽田是一種在鹽鹼地利用太陽能蒸發鹵水中的水分,以取得鹽的結晶的設施,在臺灣又稱為「鹽灘」、「鹽埕」(閩南語,包括潮州話)。而由於鹽田是仰賴太陽能來運作的,所以通常採行於有明顯乾季的地區,以避免日曬不足或中途遭到雨水的破壞。.

新!!: 碱金属和鹽田 · 查看更多 »

躁鬱症

躁鬱症(bipolar disorder,亦稱--,早期稱為躁狂抑鬱疾病、manic depression),是一種精神病經歷情緒的亢奮期和抑鬱期.

新!!: 碱金属和躁鬱症 · 查看更多 »

达姆施塔特

达姆施塔特(Darmstadt)是位于德国黑森州南部的中型城市,在德国号称“科技城”。控有萊茵河和美茵河匯口三角洲以東的地域,自古以來即為黑森南部的中心城市,曾作為歷史上黑森公國的首都。 达姆施塔特是位于法兰克福、威斯巴登和卡塞尔后黑森州第四大城市,地理上最靠近的大城市是位于北部30公里的法兰克福以及南部45公里的曼海姆。 作为城市标志的「科学城」称号是1997年由黑森州内政部授予的,作为对达姆施塔特以1877年成立的达姆施塔特工业大学为首的,包括其他三所应用技术大学共超过30000名学生还包括多家科研院所的肯定。 达姆施塔特被认为是新艺术运动的代表,这可以追述到1899年恩斯特·路德維希大公建立的达姆施塔特艺术家村。.

新!!: 碱金属和达姆施塔特 · 查看更多 »

还原剂

在化合價有改變的氧化還原反應中,氧化數由低變高(即失去电子)的物質稱作還原劑,可稱抗氧化劑,具有還原性,被氧化,其產物叫氧化產物。 还原剂是相对的概念,因为同一物质可能隨反應物質的不同,呈現还原剂或氧化剂的特性。 如:SO2+2HNO3→H2SO4+2H2O+NO2,中SO2是還原劑。 但在2H2S+SO2→3S+H2O中,SO2却是氧化剂。 化合物中如果有处在中间价态的元素,则它们通常是还原剂,如氯化亚锡、硫酸亚铁、一氧化碳、三氯化钛等。 常见的还原剂有:.

新!!: 碱金属和还原剂 · 查看更多 »

过氧化物

过氧化物,指一类含有过氧基-O-O-的化合物,具有强氧化性,又可分為有機過氧化物與無機過氧化物。在包含过氧基的化合物中,每个氧原子的氧化数为 -1。1798年德国科学家亚历山大·冯·洪堡(Alexander von Humboldt)即製造出过氧化钡。1818年泰纳尔合成过氧化氢,即今日我們最常見的雙氧水。.

新!!: 碱金属和过氧化物 · 查看更多 »

过氧化钠

过氧化钠化学式为Na2O2,又称二氧化钠或双氧化钠,是钠在氧气或空气中燃烧的产物。.

新!!: 碱金属和过氧化钠 · 查看更多 »

过氧化钾

过氧化钾是一种无机化合物,化学式为K_O_。它可以由钾与空气中氧气反应制得,同时还产生氧化钾和超氧化钾。 过氧化钾与水反应产生氢氧化钾和氧气:.

新!!: 碱金属和过氧化钾 · 查看更多 »

过敏

過敏(ἀλλεργία; 德语、法语: Allergie;allergy, allergic diseases)為人體接觸環境中部分對一般人影響不大的過敏原因子後,所引發的一系列超敏反應現象,人體對於某些過度反應的現象,包含過敏性鼻炎、食物過敏、蕁麻疹、異位性皮膚炎、哮喘與全身型過敏性反應等;症狀可能有紅眼、引起搔癢的皮疹、流鼻水、呼吸困難與腫脹等。食物耐受不佳與食物中毒是兩種不一樣的現象。 常見的過敏原有食物和花粉。金屬和其他物質也可能引發過敏。食物、蚊蟲叮咬和藥物常造成嚴重的過敏反應。症狀的發展同時取決於遺傳和環境。過敏的原始機制是免疫球蛋白E抗體,它是人體免疫系統的一部份,會與過敏原結合,並釋放組織胺等引起發炎的化學物質。過敏的確診通常依據病患的醫療史進行判斷。特定病例必須進行或血液檢驗做進一步判定。然而,檢驗結果為陽性,並不代表所檢驗的過敏原就是引發過敏的單一物質。 在幼年時期,暴露在常見的過敏原也許具有保護作用。美國1997-2011年間對18歲以下兒童進行調查,各年齡組間食物過敏患病率無差異顯著。然而,皮膚過敏隨著年齡的增加而下降,而呼吸道過敏隨著年齡的增加而增加。過敏的治療包括:避開已知的過敏原和使用皮質類固醇與抗組織胺藥。嚴重過敏時,應緊急靜脈注射腎上腺素。所謂的,是一種藉由將病人逐漸暴露在,越來越大量的過敏原下的治療方式,常用在某些特定的過敏疾病,像是乾草熱或是昆蟲叮咬。過敏原免疫療法,對於食物過敏的效果還不清楚。 過敏是相當常見的症狀。在開發中國家,大約20%的人被過敏性鼻炎所困擾,大約6%的人至少有過一次食物過敏的經驗,有將近20%的人,一生之中至少經歷一次異位性皮膚炎。依據國家的不同,有 1%到18%的人有氣喘的症狀,0.05%到2%的人會經歷全身性過敏。許多過敏性的疾病的比例有上升的趨勢。1906年,首次使用「allergy」這個字來命名過敏。 也有一種過敏稱「電視過敏」是因電視看太多所導致的過敏現象。.

新!!: 碱金属和过敏 · 查看更多 »

錒的同位素

錒的同位素:.

新!!: 碱金属和錒的同位素 · 查看更多 »

能级

能级(Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。氢原子的能级可以由它的光谱显示出来。.

新!!: 碱金属和能级 · 查看更多 »

舊量子論

舊量子論是一些比現代量子力學還早期,出現於1900年至1925年之間的量子理論。雖然並不很完整或一致,這些啟發式理論是對於經典力學所做的最初始的量子修正。舊量子論最亮麗輝煌的貢獻無疑應屬波耳模型。自從夫朗和斐於1814年發現了太陽光譜的譜線之後,經過近百年的努力,物理學家仍舊無法找到一個合理的解釋。而波耳的模型居然能以簡單的算術公式,準確地計算出氫原子的譜線。這驚人的結果給予了科學家無比的鼓勵和振奮,他們的確是朝著正確的方向前進。很多年輕有為的物理學家,都開始研究量子方面的物理。因為,可以得到很多珍貴的結果。 直到今天,舊量子論仍舊有聲有色地存在著。它已經轉變成一種半古典近似方法,稱為WKB近似。許多物理學家時常會使用WKB近似來解析一些極困難的量子問題。在1970年代和1980年代,物理學家Martin Gutzwiller發現了怎樣半經典地解析混沌理論之後,這研究領域又變得非常熱門。(參閱量子混沌理論 (quantum chaos))。.

新!!: 碱金属和舊量子論 · 查看更多 »

鈣的同位素

鈣(原子量:40.078(4))共有24個同位素,其中有5個是穩定的。.

新!!: 碱金属和鈣的同位素 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

新!!: 碱金属和鈾 · 查看更多 »

鈉的同位素

鈉(原子量:22.98976928(2))共有22個同位素,其中有1個是穩定的。.

新!!: 碱金属和鈉的同位素 · 查看更多 »

阿贡国家实验室

阿贡国家实验室(英语:Argonne National Laboratory),位于美国伊利诺伊州杜佩奇县,是美国能源部下属的国家实验室。它是美国政府规模最大、历史最悠久的科研机构之一。实验室的前身是曼哈顿工程的一部分。.

新!!: 碱金属和阿贡国家实验室 · 查看更多 »

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

新!!: 碱金属和钚 · 查看更多 »

钍(Thorium,,舊譯作釖、鋀)是原子序数为90的元素,其元素符號為Th,屬锕系元素,具有放射性。其拉丁文名称來自北欧神话的雷神索尔(Thor)。 钍-232会通过吸收慢中子而变成可作核燃料之用的铀-233。钍、铀两种元素是核能发电厂最重要的燃料。.

新!!: 碱金属和钍 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 碱金属和钠 · 查看更多 »

钠灯

钠灯,是指以金属钠蒸气为工作物质的照明装置,是气体放电灯的一种。钠灯的灯管内也会充填汞和稀有气体,但实际上起作用的是钠蒸气。钠被电离、激发后会发射出589nm的黄色光线,这些光线直接用于照明,而不是像荧光灯那样激发荧光物质发出白色的可见光。.

新!!: 碱金属和钠灯 · 查看更多 »

钨(IUPAC名:tungsten ),化学符号:W(Wolfram), 是一種化学元素,原子序数是74,是非常硬、钢灰色至白色的过渡金属。含有钨的矿物有黑钨矿和白钨矿等。钨的物理特征非常强,尤其是熔点非常高,是所有非合金金属中最高的。纯钨主要用在电器和电子设备,它的许多化合物和合金也有很多其它用途(最常见的有灯泡的鎢丝,在X射线管中以及高温合金)。 鎢的最穩定的三種同位素都有輕微的放射性。.

新!!: 碱金属和钨 · 查看更多 »

鍅(Francium,或譯作--)是一種化學元素,符號為Fr,原子序為87。鍅是電負性最低的元素之一。鈁是一種放射性極高的金屬,會衰變成砹、鐳和氡。和其他鹼金屬一樣,鈁有一顆價電子。 從來沒有人製成過可觀量鈁金屬,但根據元素週期表的規律,鈁的熔點比銫低,接近室溫,可能為液態。不過該元素的製備極為困難,其衰變發熱(最穩定同位素的半衰期只有22分鐘)會立即氣化所製成的鈁金屬。 1939年,法國科學家馬格利特·佩里發現了鍅元素。這是最後一次在自然界中發現元素,而非經過人工合成。一些人造元素後來也被發現在自然界中,如鍀和鈈。鍅在實驗室以外極為罕見,痕量出現在鈾和釷礦石中,其中同位素鍅-223一直在形成和衰變中。地球地殼中只有20至30克的鍅會同時存在。除鍅-223和221以外,其他的同位素都是合成的。實驗室中產生的最大一批鍅元素共有300,000個鍅原子。.

新!!: 碱金属和钫 · 查看更多 »

钫的同位素

#重定向 鍅的同位素.

新!!: 碱金属和钫的同位素 · 查看更多 »

钾(Kalium,化学符号:K)是原子序数为19的化学元素,银白色有光泽的1A族碱金属元素,质软,和鈉的化學性質相似但更活泼。.

新!!: 碱金属和钾 · 查看更多 »

钾石盐

钾石盐(Sylvite)是氯化钾(KCl)的天然矿物。与岩盐类质同晶。与岩盐相比,其有氯化钾特有的苦涩味。 钾石盐是地表水蒸发后最后结晶出来的矿物之一,广泛分布于地球上最为干旱地区的沉积矿床,从中国西部到美国新墨西哥至加拿大。世界上储量最大的矿床位于加拿大萨斯喀彻温省,为泥盆纪海洋蒸发的沉积物。钾石盐也是该省的官方矿物。它可用作钾肥。 钾石盐和萤石,岩盐等用于光谱学分析中的载片和棱镜,例如红外光谱法分析液体时所用的样品池。 Mineral Silvina GDFL123.jpg|钾石盐 Sylvin (aka).jpg|产自德国的钾石.

新!!: 碱金属和钾石盐 · 查看更多 »

钋是一种化学元素,它的化学符号是Po,它的原子序数是84,是银白色的金属(有時歸為類金屬)。 钋的化学性质与硒及硫类似,但带有放射性。 钋在1898年由居里夫人及她丈夫皮埃尔·居里发现。钋的拼音名称是居里夫人纪念她的故乡波兰(Polska)而命名。 沥青铀矿及锡石中有微量钋存在。.

新!!: 碱金属和钋 · 查看更多 »

鈦是化學元素,化學符號Ti,原子序數22,是銀白色過渡金屬,其特徵為重量輕、強度高、具金屬光澤,亦有良好的抗腐蝕能力(包括海水、王水及氯氣)。由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,常用來製造火箭及太空船,因此獲美誉为“太空金属”。鈦於1791年由格雷戈爾於英國康沃爾郡發現,並由克拉普羅特用希臘神話的泰坦為其命名。 钛被认为是一种稀有金属,这是由于在自然界中其存在分散并难于提取。但其相对丰度在所有元素中居第十位。鈦的礦石主要有鈦鐵礦及金紅石,廣佈於地殼及岩石圈之中。鈦亦同時存在於幾乎所有生物、岩石、水體及土壤中。從主要礦石中萃取出鈦需要用到克羅爾法或亨特法。鈦最常見的化合物是二氧化鈦,可用於製造白色顏料。其他化合物還包括四氯化鈦(TiCl4,作催化劑及用於製造煙幕或)及三氯化鈦(TiCl3,用於催化聚丙烯的生產)。 鈦能與鐵、鋁、釩或鉬等其他元素熔成合金,造出高強度的輕合金,在各方面有着廣泛的應用,包括宇宙航行(噴氣發動機、導彈及航天器)、軍事、工業程序(化工與石油製品、海水淡化及造紙)、汽車、農產食品、醫學(義肢、骨科移植及牙科器械與填充物)、運動用品、珠寶及手機等等。 鈦最有用的兩個特性是,抗腐蝕性,及金屬中最高的強度-重量比。在非合金的狀態下,鈦的強度跟某些鋼相若,但卻還要輕45%。有兩種同素異形體和五種天然的同位素,由46Ti到50Ti,其中豐度最高的是48Ti(73.8%)。鈦的化學性質及物理性質和鋯相似,這是因為兩者的價電子數目相同,並於元素週期表中同屬一族。.

新!!: 碱金属和钛 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 碱金属和钙 · 查看更多 »

肥料

肥料是任一天然或合成的一種或多種植物成長發育所必需的營養元素,約30%~50%的作物產量增加是來歸因於天然或無機化學合成的商業肥料。市面上出售的肥料種類及品牌極多,依成分可分為無機肥料和有機肥料,肥料通常直接用於土壤,或噴灑於葉片。.

新!!: 碱金属和肥料 · 查看更多 »

鉈(;thallium)是一種化學元素,符號為Tl,原子序為81。鉈是一種質軟的灰色貧金屬,在自然界中並不以單質存在。鉈金屬外表和錫相似,但會在空氣中失去光澤。兩位化學家威廉·克魯克斯和克洛德-奧古斯特·拉米在1861年獨立發現了這一元素。他們都是在硫酸反應殘留物中發現了鉈,並運用了當時新發明的火焰光譜法對其進行了鑑定,觀測到鉈會產生明顯的綠色譜線。其名稱「Thallium」由克魯克斯提出,來自希臘文中的「θαλλός」(thallos),即「綠芽」之意。翌年,拉米用電解法成功分離出鉈金屬。 鉈在氧化後,一般擁有+3或+1氧化態,形成離子鹽。其中+3態與同樣屬於硼族的硼、鋁、鎵和銦相似;但是鉈的+1態則比其他同族元素顯著得多,而且和鹼金屬的+1態相近。鉈(I)離子在自然界中大部份出現在含鉀礦石中。生物細胞的離子泵處理鉈(I)離子的方式也和鉀(I)類似。 在商業開採方面,鉈是硫化重金屬礦提煉過程的副產品之一。總產量的60至70%應用在電子工業,其餘則用於製藥工業和玻璃產業。鉈還被用在紅外線探測器中。放射性同位素鉈-201(以水溶氯化鉈的形態),在核醫學掃描中可用作示蹤劑,例如用於心臟負荷測試。 水溶鉈鹽大部份幾乎無味,且都是劇毒物,曾被用作殺鼠劑和殺蟲劑以及謀殺工具。這類化合物的使用已經被多國禁止或限制。鉈中毒會造成脫髮。.

新!!: 碱金属和铊 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: 碱金属和铁 · 查看更多 »

鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.

新!!: 碱金属和铍 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

新!!: 碱金属和铝 · 查看更多 »

铯(Caesium或Cesium,舊譯作鏭)是一种化学元素,化学符号为Cs,原子序为55。铯属于碱金属,带银金色。 铯色白质软,熔點低,28.44 ℃时即会熔化。它是在室温或者接近室温的条件下为液体的五种金属元素之一。铯的物理性质和化学性质与同为碱金属的铷和钾相似。该金属极度活泼,并且能够自燃。它是具有稳定同位素的元素中电负性最低的,其稳定同位素为铯-133。铯通常是从铯榴石中提取出来的,而其放射性同位素,尤其是铯-137,是更重元素的衰变产物,可从核反应堆产生的废料中提取。 1860年,两位德国化学家罗伯特·威廉·本生和古斯塔夫·基尔霍夫通过刚刚研究出来的焰色反应发现铯,並以拉丁文「caesius」(意為天藍色)作为新元素的名称。铯最早的小规模应用是作为真空管以及光电池的吸收剂。1967年,国际单位制中的秒开始以铯-133的发射光谱中一个特殊的频率作为定义。自此之后,铯广泛地用于原子钟。二十世纪九十年代以来,用于钻井液的甲酸铯成为铯元素的最大应用。该元素在化学工业以及电子产业等有重要用途。其放射性同位素铯-137的半衰期大约为30年,可以用于医学、工业测量仪器以及水文学。虽然铯仅有轻微的毒性,但其金属却是一种有害的材料;若其放射性同位素释放到了环境中,将对健康造成较大的威胁。.

新!!: 碱金属和铯 · 查看更多 »

銣是一種化學元素,符號為Rb,原子序数為37。銣是種質軟、呈銀白色的金屬,屬於鹼金屬,原子量為85.4678。單質銣的反應性極高,其性質與其他鹼金屬相似,例如會在空氣中快速氧化。自然出現的銣元素由兩種同位素組成:85Rb是唯一一種穩定同位素,佔72%;87Rb具微放射性,佔28%,其半衰期為490億年,超過宇宙年齡的三倍。 德國化學家羅伯特·威廉·本生和古斯塔夫·基爾霍夫於1861年利用當時的新技術火焰光譜法發現了銣元素。 銣化合物有一些化學和電子上的應用。銣金屬能夠輕易氣化,而且它有特殊的吸收光譜範圍,所以常被用在原子的激光操控技術上。 銣並沒有已知的生物功用。但生物體對銣離子的處理機制和鉀離子相似,因此銣離子會被主動運輸到植物和動物細胞中。.

新!!: 碱金属和铷 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 碱金属和铜 · 查看更多 »

铵(拼音:,,舊譯作錏,化学式),又叫铵离子、铵根、铵根离子,是由氨分子衍生出的正一价、带1个正电的离子。氨分子与一个氢離子配位结合就形成铵根离子(氨提供孤電子對)。铵离子在化学反应中相当于金属离子。.

新!!: 碱金属和铵 · 查看更多 »

铅(Plumbum,化学符号:Pb)為化学元素,原子序数82。铅是柔軟和展性強延性不佳的弱金属,有毒,也是重金属。铅原本的顏色為青白色,在空气中表面很快被一层暗灰色的氧化物覆盖。可用於建筑、铅酸充电池、弹頭、炮弹、銲接物料、釣魚用具、漁業用具、防輻射物料、奖杯和部份合金,例如電子焊接用的鉛錫合金。.

新!!: 碱金属和铅 · 查看更多 »

铋(Bismuth)是一种化学元素,它的化学符号是Bi,它的原子序数是83,是有银白色光泽的金属。 铋的化学性质与砷及锑类似。铋是最反磁性(又稱抗磁性)的金属,亦是除汞以外有最低热导率的金属。铋还拥有最高的霍尔系数 ,它具有较高的电阻 。当铋以極薄的层在物体表面沉积时具有半导体的性质,尽管铋是一个后过渡金属。可用于制备易熔合金及与锡融合防止锡疫。 鉍是一種脆性金屬,在自然界中,常以單質形式出現。鉍晶體的表面有時會呈現出不同顏色的色調,這是由於鉍晶體在空氣中氧化時形成的氧化層厚度不一,導致不同波長的光受到不同程度的反射,因此呈現出彩虹的顏色。 以前鉍被認爲是最重的穩定元素,然而在2003年時发现,铋唯一的天然同位素铋209可經α衰變變爲鉈-205。其半衰期為1.9×1019年左右,達到宇宙年龄的10億倍。所以,鉛被认为是質量最大的穩定元素。 與其他重金屬不同的是,铋的毒性與鉛或銻相比是相對的較低。铋不容易被身體吸收、不致癌、不損害DNA構造、可透過排尿帶出體外。基於這些原因,鉍經常被用於取代鉛的應用上(目前约铋产量的三分之一)。例如用於無鉛子彈,無鉛銲錫、藥物和化妝品上,特别是水杨酸铋,用来治疗腹泻。而铋的化合物的产量约占铋总产量的一半。.

新!!: 碱金属和铋 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

新!!: 碱金属和锝 · 查看更多 »

锡是一种化学元素,其化学符号是Sn(拉丁语Stannum的缩写),它的原子序数是50。它是一种主族金属。纯的锡有银灰色的金属光泽,它拥有良好的伸展性能,它在空气中不易氧化,它的多种合金有防腐蚀的性能,因此它常被用来作为其它金属的防腐层。锡的主要来源是它的一种氧化物矿物锡石(SnO2),盛產於中國雲南、馬來西亞等地。.

新!!: 碱金属和锡 · 查看更多 »

锫(--;Berkelium)是一種放射性化學元素,符號為Bk,原子序為97,屬於錒系元素和超鈾元素。位於美國加州伯克利的勞倫斯伯克利國家實驗室在1949年12月發現錇元素,因此錇以伯克利(Berkeley)命名。錇是繼鎿、鈈、鋦和鎇後第五個被發現的超鈾元素。 最常見的錇同位素是錇-249,主要經高通量核反應爐產生。目前製造該同位素的有美國田納西州的橡樹嶺國家實驗室和俄羅斯季米特洛夫格勒的核反應器研究所。第二重要的同位素錇-247要用高能量α粒子向鋦-244進行撞擊而產生。 從1967年至今,在美國生產的錇元素僅僅超過1克。除在科學研究中用來合成更重的超鈾元素和超錒系元素外,錇沒有實際的用途。2009年,在進行250天的輻射後,橡樹嶺國家實驗室製成了22毫克的錇-249,並在其後的90天內對該樣本進行了純化處理。純化後的錇元素同年被送到俄羅斯聯合核研究所,以鈣-48離子向其撞擊150天後,合成了Ts(117號元素)。 錇是一種柔軟的銀白色放射性金屬。錇-249同位素輻射的是低能電子,所以相對安全。不過,其半衰期為330天,衰變後會產生鉲-249,而該同位素會釋放高能量的α粒子,十分危險。這種衰變的現象在研究錇元素及其化合物屬性時尤其重要,因為不斷生成的鉲不但會污染化學樣本,還會釋放輻射,破壞樣本的結構。.

新!!: 碱金属和锫 · 查看更多 »

锌(zinc)是一种化学元素,它的化学符号是Zn,它的原子序数是30,相对原子质量是65.39,是一种浅灰色的过渡金属;鋅由於形、色類似鉛,故也稱為亞鉛,古稱倭鉛。 外觀呈現銀白色,主要用途為鍍鋅,在現代工業中對於電池製造上有不可磨滅的地位,最具代表性之用途為「鍍鋅鐵板」,該技術被廣泛用於汽車、電力、電子及建築等各種產業中,於生活中相當重要的金屬。.

新!!: 碱金属和锌 · 查看更多 »

锗(Germanium,舊譯作鈤)是一种化学元素,它的化学符号是「Ge」,原子序数是32。它是一種灰白色类金属,有光澤,質硬,屬於碳族,化學性質與同族的錫與硅相近。在自然中,鍺共有5種同位素,原子質量數在70至76之間。它能形成許多不同的有機金屬化合物,例如四乙基鍺及異丁基鍺烷等。 即使地球表面上鍺的豐度地殼蘊含量相對较高,但由於礦石中很少含有高濃度的鍺,所以它在化學史上發現得比較晚。門捷列夫在1869年根據元素周期表的位置,預測到鍺的存在與其各項屬性,並把它稱作擬硅。克莱门斯·温克勒於1886年在一種叫硫銀鍺礦的稀有礦物中,除了找到硫和銀之外,還發現了一種新元素。儘管這種新元素的外觀跟砷和銻有點像,但是新元素在化合物中的化合比符合門捷列夫對硅下元素的預測。温克勒以他的國家——德國的拉丁語名來為這種元素命名。 鍺是一種重要的半導體材料,用於製造晶體管及各種電子裝置。主要的終端應用為光纖系統與紅外線光學(infrared optics),也用於聚合反應的催化劑,制造電子器件與太陽能電力等。現在,開採鍺用的主要礦石是閃鋅礦(鋅的主要礦石),也可以在銀、鉛和銅礦中,用商業方式提取鍺。一些鍺化合物,如四氯化鍺(GeCl4)和甲鍺烷,会刺激眼睛、皮膚、肺部與喉嚨。.

新!!: 碱金属和锗 · 查看更多 »

锑(Stibium,化学符号为Sb,)是化学元素,原子序数为51,是有金属光泽的类金属,在自然界主要存在于硫化物矿物辉锑矿(Sb2S3)中。目前已知锑化合物在古代就用作化妆品,金属锑在古代也有记载,但那时却被误认为是铅。大约17世纪时,人们知道了锑是化学元素之一。 几十年以来,中国已成为世界上最大的锑及其化合物生产国,而其中大部分又都产自湖南省冷水江市的锡矿山。锑的工业制法是先焙烧,再用碳在高温下还原,或者是直接用金属铁还原辉锑矿。 金属锑最大的用途是与铅和锡制作合金,以及铅酸电池中所用的铅锑合金板。锑与铅和锡制成合金可用来提升焊接材料、子弹及轴承的性能。锑化合物是用途广泛的含氯及含溴阻燃剂的重要添加剂。锑在新兴的微电子技术也有用途。.

新!!: 碱金属和锑 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 碱金属和锂 · 查看更多 »

锂离子电池

锂离子电池(Lithium-ion battery)是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。锂离子电池使用一个嵌入的锂化合物作为一个电极材料。目前用作鋰離子電池的正極材料主要常見的有:鋰鈷氧化物(LiCoO2)、錳酸鋰(LiMn2O4)、镍酸锂(LiNiO2)及磷酸鋰鐵(LiFePO4)。 這些锂离子电池與其發展產品是在消费电子领域常见的。它们是便携式电子设备中可充电电池最普遍的类型之一,具有高能量密度,无记忆效应,在不使用时只有缓慢电荷损失。除了消费类电子产品,越來越進步的锂离子电池也越来越普及,可用于军事,纯电动汽车和航空航天应用。例如,磷酸鋰鐵电池正在成为铅酸蓄电池的一种常见的替代蓄电池,在历史上铅酸蓄电池用于高尔夫球车和多用途车,但這種高效的新型電池已經能夠突破舊有鋰電池與鉛酸電池的各種缺點,達成全面替代的目標。 此外,锂离子电池容易与下面两种电池概念混淆:.

新!!: 碱金属和锂离子电池 · 查看更多 »

錒是一種放射性化學元素,符號為Ac,原子序為89。錒在1899年被發現,是首個得到分離的非原始核素。雖然釙、鐳和氡比錒更早被發現,但是科學家到1902年才分離出這些元素。在元素週期表中,錒系元素始於錒,止於鐒,一共有15種元素。 錒是一種柔軟的銀白色放射性金屬。在空氣中,錒會迅速與氧氣和水氣反應,在表面形成具保護性的白色氧化層。和大部份鑭系元素和錒系元素一樣,錒的氧化態一般是+3。在自然界中,只有少量的錒出現在鈾礦石當中,主要為同位素227Ac,並進行β衰變,半衰期為21.772年。每一噸鈾礦石約含0.2毫克的錒元素。由於錒和鑭的化學和物理特性過於接近,因此要從礦石中分離出錒元素並不現實。科學家則是在核反應爐中以中子照射鐳-226來產生錒的。 錒因為稀少、昂貴,且具放射性,所以沒有大的工業用途。目前錒被用作中子源,以及在放射線療法中作為輻射源。.

新!!: 碱金属和锕 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

新!!: 碱金属和脂肪酸 · 查看更多 »

膳食礦物質

物質,又稱為無機鹽及膳食礦物質,除了碳、氫、氮和氧之外,也是生物必需的化學元素之一,也是構成人體組織、維持正常的生理功能和生化代謝等生命活動的主要元素,約佔人體體重的4.4%。它們可以是巨量礦物質(需求相對比較大)或微量礦物質(需求較小)。他們可以自然地存在於食物中,或是元素或礦物形式地被加入,例如碳酸鈣或氯化鈉。有部份這些添加物來自自然來源,例如地下的牡蠣殼。有時礦物質會被加入食物以外的飲食裡,因為維生素和礦物質補充,和在食土病裡,稱為「異食癖」或「食土症」。 適當地吸取一定程度的每種食用礦物質是有必要持續去維持身體的健康。而過量吸取食用礦物質可能會導致直接或間接的病症,歸咎於身體裡礦物質程度之間的競爭特性。例如,大量的鋅並不有害於它自己,但卻會導致銅的不足(除非補償,按照老年眼疾研究計劃裡指出)。有媒體報導稱,物體接觸礦物質含量過高的井水後,會在物體表面形成薄膜,經長時間暴曬,薄膜會變成堅硬的外殼,即「石化」。 不同地理學地區的土壤含有不同數量的礦物質。.

新!!: 碱金属和膳食礦物質 · 查看更多 »

膳食营养素参考摄入量

#重定向 参考膳食摄入量.

新!!: 碱金属和膳食营养素参考摄入量 · 查看更多 »

膜电势

#重定向 膜电位.

新!!: 碱金属和膜电势 · 查看更多 »

自然 (期刊)

《自然》(Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版於1869年11月4日。虽然今天大多数科学期刊都专一於一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》等)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。 《自然》的主要读者是从事研究工作的科学家,但期刊前部的文章概括使得一般公众也能理解期刊内最重要的文章。期刊开始部分的社论、新闻及专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等。期刊也介绍与科学研究有关的书籍和艺术。期刊的其余部分主要是研究论文,这些论文往往非常紧密,非常具有技术性。 在《自然》上发表文章是非常光荣的,《自然》上的文章经常被引用,这有助于晋升、获得资助和获得主流媒体的关注。因此科学家之间在《自然》或《科学》上发表文章上的竞争非常强。但是与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。.

新!!: 碱金属和自然 (期刊) · 查看更多 »

自然出版集团

自然出版集团(Nature Publishing Group)是一个出版科学期刊的国际出版公司。其总部位于英国伦敦,是英国麦克米伦出版公司的一个子公司,1995年英國麥克米倫出版公司被德國 Georg von Holtzbrinck Publishing Group 出版集团買下。 自然出版集团下属很多期刊,其中很大一部分都在学术界有一定影响,比如其著名的期刊-《自然》和《自然氣候變化》等。.

新!!: 碱金属和自然出版集团 · 查看更多 »

自燃

自燃(Spontaneous combustion 或 pyrophoric)是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧。蓄积的热量达到某个温度时,干草、堆肥、煤、亚麻籽油和某些化学物质都有可能发生自燃,这一温度就称作自燃温度。还有一些未经证实的报道称,有人体自燃现象。原因可能是因為衣物等被引燃后波及人体脂肪所导致的燃烧现象,被称为,而不属于严格意义上的自燃。.

新!!: 碱金属和自燃 · 查看更多 »

臭氧化物

无机化学中,臭氧化物指含有逆磁性角形臭氧离子(O3−)的一类化合物,母体臭氧酸(HO3)尚未制得。碱金属、碱土金属和四甲基铵的臭氧化物均已制得,锂臭氧化物以四氨加合物形式存在。臭氧于143K通过氨时,也可得到臭氧化铵(NH4O3)。 有机臭氧化物是烯烃臭氧化反应的中间体,不大稳定,由烯烃与臭氧进行偶极加成得到,会发生重排。它们是比有机过氧化物爆炸性更强的物质。.

新!!: 碱金属和臭氧化物 · 查看更多 »

臘肉

臘肉是中國醃肉的一种,主要流行于四川、湖南、重庆、江西和广东一带,但在南方其他地区也有制作,由于通常是在农历的腊月进行腌制,所以称作“腊肉”。.

新!!: 碱金属和臘肉 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 碱金属和金 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 碱金属和金属 · 查看更多 »

金属半径

#重定向 金属键.

新!!: 碱金属和金属半径 · 查看更多 »

金属键

金屬鍵是化學鍵中的一种,主要在金属中存在,一些原子簇化合物中也存在金属键。由離域電子及排列成晶格状的金屬離子之间的静电吸引力组合而成。由于电子的自由运动,金屬鍵没有固定的方向,因而是非极性鍵。 金屬鍵決定了金屬許多物理特性,如強度、可塑性、延展性、傳導熱量、导电性、和光澤。例如一般金属的熔点、沸点随金屬鍵的强度而升高。离子半径越小,金属键越强。 金屬之間的鍵結除了金屬鍵以外,也有其他的鍵結方式,甚至是純物質也不例外。例如元素態的鎵在固態及液態下有共價的原子對鍵結,這些原子對形成晶格,和其他的金屬仍以金屬鍵鍵結。另一個金屬-金屬共價鍵的例子是。.

新!!: 碱金属和金属键 · 查看更多 »

金属氢

金属氢是一种氢元素的简并态物质,双原子分子的同素异形体。当氢气被充分压缩,经过相变后便会产生金属氢,此形态的氢表现出金属的特性。此形态是由1935年以理论预测出 。 固態金属氢是由原子核(即质子)组成的晶体结构,其原子间隔小于玻尔半径,与电子波长长度相当(参见德布罗意波长)。电子脱离了分子轨道,表现为一般金属中的自由电子。而在‘液态’金屬氢中,质子没有晶格次序,质子和电子组成液态的系统。 2017年初,哈佛大學的研究团队通过对氢气施加495GPa的高压,首次制得固态金属氢。 2017年2月22日,由于操作失误,盛放金属氢的鑽石容器破裂,这块金属氢样本消失了。.

新!!: 碱金属和金属氢 · 查看更多 »

金屬互化物

金屬互化物(intermetallic compound)或金屬間化合物是一個被用來表示一種特殊情況的術語。指的是固體相涉及金屬,以及一種完全不同的配位化學,它被用來解釋由兩種或兩種以上金屬所構成的複合物。 請注意,許多金屬間化合物通常簡稱合金,儘管嚴格來說他們不是。就像複雜金屬合金這種非常大的金屬間化合物。.

新!!: 碱金属和金屬互化物 · 查看更多 »

镁(Magnesium)是一种化学元素,它的化学符号是Mg,它的原子序数是12,是一種银白色的碱土金属。鎂是在地球的地殼中第八豐富的元素,約佔2%的質量,亦是宇宙中第九多元素。.

新!!: 碱金属和镁 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 碱金属和镍 · 查看更多 »

镭(舊譯作鈤、銧)是一种化学元素,它的化学符号是Ra,它的原子序数是88,是一种银白色的碱土金属,带有放射性,而且十分贵重,每克约100美金。 镭在1898年由居里夫人及她丈夫皮埃尔·居里在捷克北波希米亚发现。他们发现铀在衰变后,衰变物仍带放射性。镭的拼音名称Radium即是放射性的意思。 镭-226為鐳的最穩定同位素,半衰期為1600年,进行α-蜕变,放出α射线和γ射线。它衰变时会放出氡气到大气中。氡仍有放射性,且可被生物吸入,危害生命。 镭能够致癌,但是它也能够治疗癌症。.

新!!: 碱金属和镭 · 查看更多 »

-- 镉(,),是性质柔软的蓝白色有毒过渡金属,化学符号为Cd,原子序数为是48。镉能在锌矿找到。镉和锌均可用作电池材料。镉可制作鎳鎘電池、用于塑膠製造和金屬電鍍,生产顏料、油漆、染料、印刷油墨等中某些黃色顏料、制作車胎、某些發光電子組件和核子反應爐原件。.

新!!: 碱金属和镉 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 碱金属和配合物 · 查看更多 »

鉀的同位素

鉀(原子質量單位:39.0983(1))共有28個同位素,其中有2個是穩定的。.

新!!: 碱金属和鉀的同位素 · 查看更多 »

鋰的同位素

鋰(原子量:6.941(2))目前共觀測到7個同位素,其中有2個是穩定的,分別是6Li和7Li,除了穩定的之外,半衰期最長的是8Li,半衰期有838毫秒,其次是9Li,有187.3毫秒,之後其他的同位素半衰期都在8.6毫秒以下。而4Li是所有同位素裡面半衰期最短的同位素,只有 7.58043秒。.

新!!: 碱金属和鋰的同位素 · 查看更多 »

英國皇家天文學會

英國皇家天文學會(Royal Astronomical Society, RAS),是由英國天文學家組成的天文研究團體。總部位於倫敦。目的是為了增進天文學、行星科學、地球物理學及其他與天文相關學科的研究。在國際天文聯會中代表英國,也是國際科學理事會的成員。.

新!!: 碱金属和英國皇家天文學會 · 查看更多 »

英国皇家化学学会

英国皇家化学学会(,简称RSC)是一所英国的学会(专业机构)、欧洲最大的化学科学组织、历史最为悠久的化学学会,目标为“推进化学科学”。1841年,英国皇家化学学会成立;1980年,化学学会、皇家化学研究所、法拉第学会和分析化学学会合并为今天的英国皇家化学学会并开始使用新的“皇家宪章”。成立之初,该协会在英国有34000名会员,在国外还有8000名会员,合计42000名会员。现在的英国皇家化学学会由4.5万名化学方面的研究人员、教师和工业家组成,每年都会组织数百次化学会议。.

新!!: 碱金属和英国皇家化学学会 · 查看更多 »

鋇的同位素

鋇(原子量:137.327(7))的同位素,其中有6個同位素是穩定的。.

新!!: 碱金属和鋇的同位素 · 查看更多 »

電子層

電子層,或稱電子殼或電子殼層,是原子物理學中,一組擁有相同主量子數n的原子軌道。電子層組成為一粒原子的電子序。這可以證明電子層可容納最多電子的數量為2n^2(但倒数第一层只能容纳2个,倒数第二层只能容纳8个,倒数第三层只能容纳18个),這種全滿的電子層稱為「閉合殼層」。 亨利·莫塞萊和查尔斯·巴克拉的X-射線吸收研究首次於實驗中發現電子層。巴克拉把它們稱為K、L和、M(以英文字母排列)等電子層。這些字母後來被n值1、2、3等取代。它們被用於分光鏡的西格班記號法。 電子層的名字起源於波耳模型中,電子被認為一組一組地圍繞著核心以特定的距離旋轉,所以軌跡就形成了一個殼。.

新!!: 碱金属和電子層 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 碱金属和電子伏特 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 碱金属和電荷 · 查看更多 »

電極化

在经典电磁学裏,當給電介質施加一個電場時,由於電介質內部正負電荷的相對位移,會產生電偶極子,這現象稱為電極化(electric polarization)。施加的電場可能是外電場,也可能是嵌入電介質內部的自由電荷所產生的電場。因為電極化而產生的電偶極子稱為“感應電偶極子”,其電偶極矩稱為“感應電偶極矩”。 電極化強度又稱為「電極化矢量」,定義為電介質內的電偶極矩密度,也就是單位體積的電偶極矩。這定義所指的電偶極矩包括永久電偶極矩和感應電偶極矩。它的國際單位制度量單位是庫侖每平方米(coulomb/m2),表示为矢量 P。McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3.

新!!: 碱金属和電極化 · 查看更多 »

老普林尼

蓋乌斯·普林尼·塞孔杜斯(Gaius Plinius Secundus,),常稱为老普林尼或大普林尼,古羅馬作家、博物学者、军人、政治家,以《自然史》(一译《博物志》)一書留名後世。其外甥为小普林尼。 老普林尼是罗马骑士与元老院议员加伊乌斯·凯奇利乌斯的外孫。他出生在科莫,而非訛傳的维罗纳。学过法律,任西班牙代理总督,后担任那不勒斯舰队司令。老普林尼在观察维苏威火山爆发时,不幸被火山噴出的毒氣毒死。 其一生著有7部著作,其中六本散失,僅剩片段。。.

新!!: 碱金属和老普林尼 · 查看更多 »

GSI亥姆霍兹重离子研究中心

#重定向 亥姆霍兹重离子研究中心.

新!!: 碱金属和GSI亥姆霍兹重离子研究中心 · 查看更多 »

International Union of Pure and Applied Chemistry

#重定向 國際純化學和應用化學聯合會.

新!!: 碱金属和International Union of Pure and Applied Chemistry · 查看更多 »

IUPAC

#重定向 國際純化學和應用化學聯合會.

新!!: 碱金属和IUPAC · 查看更多 »

Oxford English Dictionary

#重定向 牛津英語詞典.

新!!: 碱金属和Oxford English Dictionary · 查看更多 »

PH值

pH,亦称pH值、氢离子浓度指数、酸鹼值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家瑟倫·索倫森(Søren Peder Lauritz Sørensen)提出的。「pH」中的「H」代表氫離子(H+),而「p」的來源則有幾種說法。第一種稱p代表德语「Potenz」,意思是力度、強度;第二種稱pH代表拉丁文「pondus hydrogenii」,即「氫的量」;第三種認為p只是索倫森随意选定的符号,因为他也用了q。现今的化学界把p加在无量纲量前面表示该量的负对数。 通常情况下(25℃、298K左右),当pH小于7的时候,溶液呈酸性,当pH大于7的时候,溶液呈碱性,当pH等于7的时候,溶液为中性。 pH允许小于0,如鹽酸(10 mol/L)的pH为−1。同样,pH也允许大于14,如氫氧化鈉(10 mol/L)的pH为15。.

新!!: 碱金属和PH值 · 查看更多 »

S区元素

藍色代表s區元素,氦也屬於s區元素。 s区元素主要包括元素周期表中IA族元素和IIA族元素,IA族元素包括氢、锂、钠、钾、铷、铯、钫、Uue、Uhe九种元素,由於鈉和鉀等金屬的氫氧化物是典型的鹼,因此除氢外的这八种元素又称碱金属,IIA族元素包括铍、镁、钙、锶、钡、镭、Ubn、Usn八种元素,由於鈣,鍶,鋇的氧化物之性質介於鹼金屬與稀土元素之間,因此又称碱土金属。 由於氦的電子排布為1s2,故被分為s区元素。 鈁和鐳都是放射性元素。鋰最重要的礦石是鋰輝石(LiAlSi2O6)。鈉主要以氯化鈉溶液的形式存在於海洋,鹽湖及岩石中。鉀的主要礦物是鉀石鹽(2KCl·MgCl2·6H2O)。鈹的主要礦物是綠柱石(3BeO·Al2O3·6SiO2)。鎂的主要礦石是菱鎂礦(MgCO3)及白雲石。另外,鈣,鍶,鋇則主要以碳酸鹽及硫酸鹽的形式存在,如方解石(碳酸鈣),石膏(二水合硫酸鈣),天青石(硫酸鍶),重晶石(硫酸鋇)。 在本区元素中同一主族从上到下、同一周期从左至右性质的变化都呈现明显的规律性。 区.

新!!: 碱金属和S区元素 · 查看更多 »

Uue

Uue(英語:Ununennium,化學符號為Uue)是一種尚未被發現的化學元素,原子序數是119,在元素週期表中排列在第8周期、1族。其相對原子質量約為297u。.

新!!: 碱金属和Uue · 查看更多 »

极性

極性(polarity),在化學中指一根共價鍵或一個共價分子中電荷分佈的不均勻性。如果電荷分佈得不均勻,則稱該鍵或分子為極性;如果均勻,則稱為非極性。 物質的一些物理性質(如溶解性、熔沸點等)與分子的極性相關。.

新!!: 碱金属和极性 · 查看更多 »

核子

在化學和物理學裏,核子(nucleon)是組成原子核的粒子。每個原子核都擁有至少一個核子,每個原子又是由原子核與圍繞原子核的一個或多個電子所組成。核子共有兩種:中子和質子。任意原子同位素的質量數就是其核子的總數。因此有時人們也會稱這個數字為「核子數」。 在1960年代之前,核子被認為是基本粒子,不是由更小的部份組成的。今天我們知道核子是複合粒子,由三個夸克經強相互作用綑綁在一起組成。兩個或多個核子之間的交互作用稱為核力,最終這也是強交互作用引起的。(在發現夸克之前,「強交互作用」一詞只用於核子間的交互作用。) 核子研究屬於粒子物理學和核物理學的交叉領域。粒子物理學,特別是量子色動力學,提供了解釋夸克及強交互作用屬性的公式。這些公式用定量方法解釋夸克是如何結合成為中子和質子(以及所有其他的強子)。然而,當多個核子組合為一個原子核(核素)時,這些基礎方程式變得非常難直接求解,必須使用核物理學的方法。核物理學利用近似法和模型來研究多個核子之間的交互作用,例如用核殼層模型。這些模型能夠準確解釋核素的屬性,比如哪些核素會進行核衰變等。 質子和中子都是重子和費米子。質子和中子特別相似,除了中子不帶有電荷以外,中子的質量比質子僅僅高0.1%,它們的質量非常相近,因此它們可以視為同樣核子的兩種狀態,共同組成了一個同位旋二重態(),在抽象的同位旋空間做旋轉變換,就可以從中子變換為質子,或從質子變換為中子。這兩個幾乎相同的核子都感受到相等的強相互作用,這意味著強相互作用對於同位旋空間旋轉變換具有不變性。按照諾特定理,對於強相互作用,同位旋守恆。.

新!!: 碱金属和核子 · 查看更多 »

核素

核素(Nuclide)是具有特定原子量、原子序数和核能态,且平均寿命长得足以被观察到的一类原子。它是带有原子中的電子雲的某类特殊原子核,以其质量数、中子数以及核的能态为标识。.

新!!: 碱金属和核素 · 查看更多 »

核燃料棒

#重定向 核燃料.

新!!: 碱金属和核燃料棒 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: 碱金属和核聚变 · 查看更多 »

核试验

核試驗(nuclear test),又稱核試爆,是为了军事研究和科学研究目的,對核爆炸装置或核子武器在预定条件下作出實際的爆破試驗。不少國家在20世紀均發展出核武並試驗,有關部門可透過這些試驗去瞭解這些武器如何運作。其主要目的是:鉴定核爆炸装置的威力及其他性能,验证理论计算和结构设计是否合理,为改进核武器设计或定型生产提供依据;在核爆炸环境下研究核爆炸现象学和各种杀伤破坏因素的变化规律;研究核爆炸的和平利用等。它是一项规模很大、需要多学科、多部门协同配合和耗费大量人力、物力的科学试验。然而在歷史上大部分的核試驗中,多半帶有政治上威嚇的意味。.

新!!: 碱金属和核试验 · 查看更多 »

核液滴线

#重定向 原子核滴线.

新!!: 碱金属和核液滴线 · 查看更多 »

标准状况

标准状况(standard temperature and pressure, STP,标准温度与标准压力),简称「标况」。由於地表各處的溫度、壓力皆不同,即使是同一地點的溫度壓强也隨測量時間不同而相異,因此為研究方便,制定出描述物質特徵的標準狀況:.

新!!: 碱金属和标准状况 · 查看更多 »

次原子粒子

次原子粒子,或稱亚原子粒子。是指比原子還小的粒子。例如:電子、中子、質子、介子、夸克、膠子、光子等等。.

新!!: 碱金属和次原子粒子 · 查看更多 »

正丁基锂

正丁基鋰(英文簡稱BuLi),常简称为丁基鋰,是最重要的有機鋰化合物。其被廣泛使用於彈性聚合物如聚丁二烯與苯乙烯-丁二烯-苯乙烯樹脂(SBS)的聚合起始劑。也常在工業上與實驗室中,用於有機合成中的強鹼(超強鹼)。 正丁基鋰通常以烷烴溶液(如戊烷、己烷、庚烷溶液)的形式販售。 雖然正丁基鋰本身為一種無色固體,但通常以淡黃色烷烴溶液的形式出現。這種溶液若保存得當能無限期保存,但實際上通常會隨時間緩慢分解,產生氫氧化鋰的白色細粉狀沉澱,溶液顏色並轉為橘色。.

新!!: 碱金属和正丁基锂 · 查看更多 »

氚(法語,德語,英語,荷蘭語: Tritium;符号:T或3H),注音:ㄔㄨㄢ;拼音:chuān(1);客家話:con1。亦稱超重氫,是氫的同位素之一,元素符號為T或3H。它的原子核由一顆質子和兩顆中子所組成,並帶有放射性,會發生β衰變,放出電子變成氦-3,其半衰期為12.43年。 由於氚的β衰變只會放出高速移動的電子,不會穿透人體,因此只有大量吸入氚才會對人體有害。 在地球的自然界中,相比一般的氫氣,氚的含量極少。氚的產生是當宇宙射線所帶的高能量中子撞擊氘核,其氘核與中子結合為氚核。 氚与氘之用途類同,都是制造氢弹的原料。另外氚還可做為不需電源、有自發光能力,供暗處識別用的氚管。 氚的半衰期只有12.43年,每過12.43年就要減少一半,所以地球誕生之初存在的氚早已衰變得無影無蹤了。自然界中的氚,是宇宙射線的產物,只有幾千克,物稀為貴,所以大部分是人工合成。.

新!!: 碱金属和氚 · 查看更多 »

氟是一种化学元素,符号为F,其原子序数为9,是最轻的卤素。其单质在标准状况下为浅黄色的双原子气体,有剧毒。作为电负性最强的元素,氟极度活泼,几乎与所有其它元素,包括某些惰性气体元素,都可以形成化合物。 在所有元素中,氟在宇宙中的丰度排名为24,在地壳中丰度排名13。萤石是氟的主要矿物来源,1529年该矿物的性质首次被描述。由于在冶炼中将萤石加入金属矿石可以降低矿石的熔点,萤石和氟包含有拉丁语中表示流动的词根fluo。尽管在1810年就已经认为存在氟这种元素,由于氟非常难以从其化合物中分离出来,并且分离过程也非常危险,直到1886年,法国化学家亨利·莫瓦桑才采用低温电解的方法分离出氟单质。许多早期的实验者都因为他们分离氟单质的尝试受到伤害甚至去世。莫瓦桑的分离方法在现代生产中仍在使用。自第二次世界大战的曼哈顿工程以来,单质氟的最大应用就是合成铀浓缩所需的六氟化铀。 由于提纯氟单质的费用甚高,大多数的氟的商业应用都是使用其化合物,开采出的萤石中几乎一半都用于炼钢。其余的萤石转化为具有腐蚀性的氟化氢并用于合成有机氟化物,或者转化为在铝冶炼中起到关键作用的冰晶石。有机氟化物具有很高的化学稳定性,其主要用途是制冷剂、绝缘材料以及厨具(特氟龙)。诸如阿托伐他汀和氟西汀等药物也含有氟。由于氟离子能够抑制龋齿,氟化水和牙膏中也含有氟。全球与氟相关的化工业年销售额超过150亿美元。 气体是温室气体,其温室效应是二氧化碳的100到20000倍。由于碳氟键强度极高,有机氟化合物在环境中难以降解,能够长期存在。在哺乳动物中,氟没有已知的代谢作用,而一些植物能够合成能够阻止食草动物的有机氟毒素。.

新!!: 碱金属和氟 · 查看更多 »

氟化锂

氟化锂(化学式:LiF)是一个碱金属卤化物,室温下为白色晶体,难溶于水。它可由碳酸锂或氢氧化锂与氢氟酸在铅皿或铂皿中结晶制得。 氟化锂有氯化钠型的晶体结构,是碱金属氟化物中最难溶和最稳定的。它不生成水合物,在氢氟酸中溶解度会增大,原因是生成氟氢离子HF2−。 氟化锂是电解铝工业中的助熔剂,以增加电流的效率,从而加快铝的生产和降低生产成本。它对紫外线的透过率是所有物质中最高的,因此在光学材料中用作紫外线的透明窗,氟化锂单晶可用于生产特殊的光学仪器。 氟化鋰在製備粉末時,也扮演助熔劑的角色,其可有效幫助粉末合成燒結溫度下降。.

新!!: 碱金属和氟化锂 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

新!!: 碱金属和氡 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 碱金属和氢 · 查看更多 »

氢负离子

氢负离子(H−)是氢原子获得一个电子后产生的单价负离子,它是恒星(如太阳)大气的重要组分,作为能量0.75-4.0 eV的光子的主要吸收剂,也存在于地球电离层中。 氢负离子是很强的还原剂,它与氢气形成的半反应的标准电极电势为−2.25 V。它是除电子盐中的电子外最简单的负离子,含两个电子、一个质子。 形式上含氢负离子的化合物称为氢化物。 氢负离子 H−,由两个电子及一个质子组成,是已知除电子盐(Electride)外最小的阴离子。氢负离子不能在水溶液中存在,是已知的最强碱之一,这可通过以下生成反应看出: 负氢是非常强的还原剂: 已知自由氢负离子的有效半径为208pm。这个数据与其他数据比较时,特别是与He原子的93pm,H原子的50pm,Cl−的结晶半径181pm,H的共价半径30pm,及类盐氢化物中H−的半径(134-154pm)相比是有趣的。这个反常大的半径可以用H−的核电荷较小,电子彼此排斥和对核引力的屏蔽效应来解释。F.

新!!: 碱金属和氢负离子 · 查看更多 »

氢氧化钠

氫氧化鈉,又称烧碱和苛性钠,化學式為,是一種具有高腐蝕性的強鹼,一般為白色片狀或顆粒,能溶於水生成鹼性溶液,另也能溶解於甲醇及乙醇。此鹼性物具有潮解性,會吸收空氣裡的水蒸氣,亦會吸取二氧化碳等酸性氣體。 氫氧化鈉為常用的化學品之一。其應用廣泛,為很多工業過程的必需品:常用於製造木浆紙張、紡織品、肥皂及其他清潔劑等,另也用於家用的水管疏通剂。2004年全球總共製造了六千萬噸的氫氧化鈉,而總消耗量為五千一百萬噸。.

新!!: 碱金属和氢氧化钠 · 查看更多 »

氢氧化钾

氢氧化钾(化学式:KOH),俗稱苛性鉀,白色固体,溶于水、醇,但不溶于醚。在空气中极易吸湿而潮解。可与二氧化碳反应生成碳酸钾。所以它會被用作吸收二氧化碳之用。 氢氧化钾是典型的強鹼,有許多工業上的應用,大部份的應用都是因為氢氧化钾可以和酸反應,以及氢氧化钾本身的腐蝕性。2005年生產的氢氧化钾估計有700,000至 800,000噸,約為氢氧化鈉的百分之一H.

新!!: 碱金属和氢氧化钾 · 查看更多 »

氢氧化铝

氢氧化铝(aluminium hydroxide),化學式Al(OH)3,是铝的氢氧化物。是一种碱,由于又显一定的酸性,所以又被俗称为“铝酸”(H3AlO3 或 HAlO2·H2O),但实际与碱反应时生成的是四羟基合铝酸盐。.

新!!: 碱金属和氢氧化铝 · 查看更多 »

氢氧化锂

氢氧化锂(分子式:LiOH)是锂的氢氧化物,具腐蚀性,室温下为白色潮解性晶体。易溶于水,溶液呈较强碱性,微溶于乙醇,存在无水和一水合物两种状态。.

新!!: 碱金属和氢氧化锂 · 查看更多 »

氢氧根

氫氧離子,化學符號為OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常與不同的元素組成氫氧化物。.

新!!: 碱金属和氢氧根 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 碱金属和氦 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 碱金属和氧 · 查看更多 »

氧化剂

氧化剂是一类具有氧化性的物质。在化合价有改变的氧化还原反应中,由高价变到低价(即搶到电子)的物质作氧化剂,具有氧化性,可以被还原,其产物叫还原产物。 另一方面,氧化剂也是一类危险化学品的总称,它属于中华人民共和国《危险化学品名录》的第5类危险化学品。.

新!!: 碱金属和氧化剂 · 查看更多 »

氧化钠

氧化钠,分子式Na2O,是钠的正常氧化物,常温下是白色固体。其性质极活泼,为碱性氧化物,与水反应生成氢氧化钠。在空气中加热能生成浅黄色的过氧化钠。.

新!!: 碱金属和氧化钠 · 查看更多 »

氧化锂

氧化鋰(2O)是一種無機化合物,可透過鋰在空氣或氧氣中燃燒而得,過程中會伴隨生成少量的過氧化鋰。 高純度的可由過氧化鋰()在450°C的熱分解中制得。.

新!!: 碱金属和氧化锂 · 查看更多 »

氧化态

氧化态(英文:Oxidation State)表示一个化合物中某个原子的氧化程度。形式氧化态是通过假设所有异核化学键都为100%离子键而算出来的。氧化态用阿拉伯数字表示,可以为正数、负数或是零。 氧化态的升高称为氧化,降低则称为还原。这两个过程涉及电子的形式转移,即总体上看,还原是获得电子的过程,而氧化是失去电子的过程。 IUPAC对氧化态的定义为: “氧化态:一种化学物质中某个原子氧化程度的量度。根据以下公认的规则可计算该原子的电荷:.

新!!: 碱金属和氧化态 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 碱金属和氧气 · 查看更多 »

氧族元素

氧族元素是元素周期表上的ⅥA族元素(IUPAC新规定:16族)。 这一族包含氧(O)、硫(S)、硒(Se)、碲(Te)、钋(Po)、鉝(Lv)六种元素,其中釙、鉝为金属,碲為類金屬,氧、硫、硒是典型的非金属元素。在标准状况下,除氧单质为气体外,其他元素的单质均为固体。 在和金属元素化合时,氧、硫、硒、碲四种元素通常显-2氧化态;但当硫、硒、碲处于它们的酸根中时,最高氧化态可达+6。 一些过渡金属常以硫化物矿的形式存在于地壳中,如FeS2、ZnS等。.

新!!: 碱金属和氧族元素 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

新!!: 碱金属和氨 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 碱金属和氩 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

新!!: 碱金属和氪 · 查看更多 »

氮化物

化学里氮化物是一类氮的化合物,其中氮显-3价。 氮是具有最高电负性的元素之一,只有氧,氟和氯比它更高。这就意味着氮化物由一大组化合物构成。它们有广泛的性质和应用。.

新!!: 碱金属和氮化物 · 查看更多 »

氮化鋰

氮化鋰是由氮和鋰組成的化合物,化學式為Li3N。氮化鋰是鹼金屬氮化物中熱穩定性最高的化合物,也是當中唯一一個可以在室溫下製備的化合物。氮化物熔點很高,常溫下為紫色或紅色的晶状固體。.

新!!: 碱金属和氮化鋰 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 碱金属和氯 · 查看更多 »

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

新!!: 碱金属和氯化钠 · 查看更多 »

氯化钾

氯化钾(化学式:KCl),英文:Potassium chloride。鹽酸鹽的一種,白色结晶或结晶性粉末,易溶于水和甘油,难溶于醇,不溶于醚和丙酮。.

新!!: 碱金属和氯化钾 · 查看更多 »

氯化钙

#重定向 氯化鈣.

新!!: 碱金属和氯化钙 · 查看更多 »

氯化铯

氯化铯是一种无机盐,分子式为CsCl。氯化铯型结构是一种很重要的晶体结构。.

新!!: 碱金属和氯化铯 · 查看更多 »

氯化锂

氯化锂(化学式:LiCl)是一个碱金属卤化物,室温下为白色易潮解的固体。受锂较小的离子半径和较高的水合能的影响,氯化锂的溶解度比其他同族氯化物都要大得多(83g/100mL,20 °C)。Ulrich Wietelmann, Richard J. Bauer "Lithium and Lithium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH: Weinheim.

新!!: 碱金属和氯化锂 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 碱金属和水 · 查看更多 »

水溶液

水溶液是指溶劑是水的溶液。在化學反應中,若反應物或生成物為水溶液,一般會在其化學式右下方加上(aq)識別。例如食鹽NaCl的水溶液,會用NaCl(aq)表示。由於水是自然界蘊含豐富的良好溶劑,因此在化學中常用到水溶液。 具有疏水性的物質不溶於水中,而具有親水性的物質才能形成水溶液。像食鹽即為親水性的物質。若依照酸鹼電離理論,酸和鹼也是親水性物質。 物質是否溶於水,主要是根據物質和水之間是否可以產生強大的吸引力,而且需要大於水和水之間的分子间作用力。若將無法溶於水的固體物質加入水中,則會產生沉澱。 若水溶液可以有效的傳導電流,則水溶液中含有強電解質,反之則表示水溶液中只有弱電解質。強電解質是指在水中會完全解离的物質,而弱電解質在水中只會部份解离。 非電解質是指可以溶於水,但仍不會產生離子,仍保留分子完整性的物質。非電解質有糖、尿素、甘油和二甲基碸。 當計算有水溶液在內的化學反應時,一般需要知道溶液的濃度及體積莫爾濃度。 許多水溶液是透明的,但可能因為其中的離子不同,而產生不同的顏色。.

新!!: 碱金属和水溶液 · 查看更多 »

永斯·贝采利乌斯

永斯·雅各布·貝采利烏斯男爵(Jöns Jacob Berzelius,),又譯--、柏濟力阿斯、貝齊里烏斯、白則里,瑞典化學家。他就讀烏普薩拉大學,獲得後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化這些重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;但是,他主張和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」,在生前以至死後均獲享多種榮譽及紀念。.

新!!: 碱金属和永斯·贝采利乌斯 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 碱金属和氖 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

新!!: 碱金属和气体 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

新!!: 碱金属和氙 · 查看更多 »

汞是化学元素,俗稱水銀,臺灣亦可寫作銾,化学符号Hg,原子序数80,是種密度大、銀白色、室温下為液態的過渡金属,為d区元素。常用來製作溫度計。在相同條件下,除了汞之外是液體的元素只有溴。銫、鎵和銣會在比室溫稍高的溫度下熔化。汞的凝固點是,沸點是,汞是所有金屬元素中液態溫度範圍最小的。 汞在全世界的矿产中都有产出,主要来自朱砂(硫化汞)。摄入或吸入的朱砂粉尘都是剧毒的。汞中毒还能由接触可溶解于水的汞(例如氯化汞和甲基汞)引起,或是,吸入汞蒸气或者食用被汞污染的海产品或吸食入汞化合物引起中毒。 汞可用于溫度計、氣壓計、壓力計、血壓計、浮閥、水銀開關和其他裝置,但是汞的毒性導致汞溫度計和血壓計在醫療上正被逐步淘汰,取而代之的是酒精填充,鎵、銦、錫的填充,-zh-cn:数码;zh-tw:數位;zh-hk:數碼;-的或者基於電熱調節器的溫度計和血壓計。汞仍被用于科學研究和補牙的汞合金材料。汞也被用于發光。荧光燈中的電流通过汞蒸氣產生波長很短的紫外線,紫外線使荧光體发出荧光,從而產生可見光。.

新!!: 碱金属和汞 · 查看更多 »

沸石

沸石是一种含有水架状结构的铝硅酸盐矿物,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然铝硅酸盐矿石在灼烧时会产生沸腾现象,因此命名为沸石(瑞典文:zeolit)。在希腊文中意为“沸腾的石头”。此后人们对沸石的研究不断深入。 沸石因成分不同分为方沸石(Na·H2O)和钙沸石(Ca·3H2O)。其含水量与外界温度及水蒸气的压力有关,加热时水分可慢慢逸出,但并不破坏其结晶构造。 晶体结构中有许多空腔(笼)和连接空腔的通道,水分子位于其中,可由通道运输。晶体和集合体形态及解理随着晶体结构的不同而异,一般呈浅色,玻璃光泽,硬度3-3.5,比重2.0-2.4。 沸石族矿物由低温热液作用形成,见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。 1932年,McBain提出了“分子筛”(Molecular sieve)的概念。表示可以在分子水平上筛分物质的多孔材料。沸石用作分子筛,可以吸取或过滤其他物质的分子。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。 除了天然产品外,也可由人工合成,人造沸石是:磺酸化聚苯乙烯,天然沸石:铝硅酸钠。.

新!!: 碱金属和沸石 · 查看更多 »

沸点

沸点是指物质沸腾时的温度,更严格的定义是液体成为气体的温度。液体在未达到沸点温度时也会通过挥发变成气体。然而,挥发是一种液体表面的现象,也就是说只有液体表面的分子才会挥发。沸腾则是在液体的整个部分发生的变化,处于沸点的液体的所有分子都会蒸发,不断地产生气泡。.

新!!: 碱金属和沸点 · 查看更多 »

泡菜

泡菜古稱葅(ㄗㄨ),是指為了利於長時間存放而經過發酵的蔬菜。一般來說,只要是纖維豐富的蔬菜或水果,都可以被製成泡菜;像是卷心菜、大白菜、紅蘿蔔、白蘿蔔、大蒜、青蔥、小黃瓜、洋蔥、辣椒等。蔬菜在經過醃漬及調味之後,有種特殊的風味,許多人會當作是一種常見的配菜食用。所以現代人在食材取得無虞的生活環境中,還是會製做泡菜,用來宴請客人。世界各地都有泡菜的影子,風味也因各地做法不同而有異。已製妥的泡菜有豐富的乳酸菌,可幫助消化。若是誤食遭到污染的泡菜,容易食物中毒。.

新!!: 碱金属和泡菜 · 查看更多 »

津特耳相

津特耳相(Zintl phase)是指碱金属与碱土金属和p区金属或类金属形成的产物。 津特耳相以德国化学家爱德华·津特耳命名,以纪念他在20世纪30年代对这些化合物的研究。S.M. Kauzlarich, Encyclopedia of Inorganic chemistry, 1994, John Wiley & Sons, ISBN 0-471-93620-0这个术语则是由弗里茨·拉夫斯于1941年首先使用的。Zintl Phases: Principles and Recent Developments, Book Series: Structure and Bonding.

新!!: 碱金属和津特耳相 · 查看更多 »

活化能

活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反应发生所需要的最小能量,因此活化能越高,反应越难进行。反应的活化能通常表示为Ea,单位是千焦耳每摩尔(kJ/mol)。 活化能基本上是表示势垒(有时称为能垒)的高度。.

新!!: 碱金属和活化能 · 查看更多 »

液氨

液氨(NH3)指的是液態的氨气,為工業上氨氣的主要储存形式。是一种常用的非水溶剂和致冷剂,也是除了水以外最常用的无机溶剂。不过由于它的挥发性和腐蚀性,液氨在储存和运输时发生事故的几率也相当高。.

新!!: 碱金属和液氨 · 查看更多 »

液滴模型

液滴模型是一個關於原子核的模型。 魏茨澤克公式將原子核的束縛能,表示成數個項之和。式中有部分常項由實驗確定,變數則由理論推導出。 一個原子核的束縛能可表示為: 其中A為質量數(核子數目,質子及中子數目之和),Z為原子序數(質子數目)。 另外,B.

新!!: 碱金属和液滴模型 · 查看更多 »

溶解性

溶解性或溶解度()是指定溫、定壓時,每單位飽和溶液中所含溶質的量;也就是一种物质能够被溶解的最大程度或飽和溶液的濃度。通常用體積莫耳濃度、質量百分濃度或「每100公克溶劑能溶解的溶質重」表示之。溶解度主要取决于溶质在溶劑中的溶解平衡常数(溶度積)、溫度、極性、和-zh-hans:压强; zh-hk:壓強; zh-tw:壓力-。相同溶質在不同溶劑下的溶解度不盡相同;相同溶劑在不同溶質下的溶解度不盡相同;即便是相同的溶質和溶液,在不同的環境因素下溶解度也不盡相同。 當溶質分子進入溶液時,因為分子可以自由移動,有些分子會碰撞到未溶解的晶體表面,並被吸引回到晶體表面析出,此即為結晶或沉澱。在分子不斷溶解和結晶的過程中,當溶解速率和結晶速率相等時,稱為溶解平衡。達到溶解平衡的溶液稱為飽和溶液,此時溶質的濃度定義為溶解度。濃度低於溶解度的溶液稱為未飽和溶液;在某些特殊環境下,會產生濃度大於溶解度的溶液,稱為'''過飽和溶液'''。 如果一种溶质對溶液的溶解度很高,我们就说这种物质是可溶的;如果溶解度不高,称这种物质是微溶的;如果溶解度極低,则称这种物质是不溶或难溶的。在台灣,可溶、微溶、難溶這三種狀態分別以體積莫耳濃度10^M和10^M做為分野。在中國大陸,將每100mL溶剂中溶质的溶解度小于0.01g的物质称为难溶物质,在0.01~1克之间的为微溶,1~10克为可溶,10克以上为易溶。.

新!!: 碱金属和溶解性 · 查看更多 »

滷水

滷水,是廣東潮汕地區的調味料,流行於廣東、香港、福建及台灣等地,用於製作滷味食品。.

新!!: 碱金属和滷水 · 查看更多 »

潮解

潮解(Deliquescence)指的是某些物质(多指固体)从空气中吸收或者吸附水分,使得表面逐渐变得潮湿、滑润,最后物质就会从固体变为该物质的溶液的现象。 吸湿性(Hydroscopy)则更广泛地指物质从吸取水分的能力。常见的有棉花、纸等纤维素类物质,以及糖、焦糖、蜂蜜、甘油、乙醇、甲醇、硫酸等水溶性高的物质,或者和空气成分反应产生易溶于水的物质,如红磷。易潮解的物质一定具有吸湿性,而具有吸湿性的物质不一定会潮解。.

新!!: 碱金属和潮解 · 查看更多 »

激发态

发是在任意能级上能量的提升。在物理学中有对于这种能级有专门定义:往往与一个原子被激发至激发态有关。 在量子力学中,一个系统(例如一个原子,分子或原子核)的激发态是该系统中任意一个比基态具有更高能量的量子态(也就是说它具有比系统所能具有的最低能量要高的能量)。 一般来说,处于激发态的系统都是不稳定的,只能维持很短的时间:一个量子(例如一个光子或是一个声子)在发生自发辐射或受激辐射后,只在能量被提升的瞬间存在,随即返回具有较低能量的状态(一个较低的激发态或基态)。这种能量上的衰减一般被称为“衰变”(decay),它是“激发”的逆过程。 持续时间较长的激发态被叫做亚稳态(metastable)。同质异能素(nuclear isomers)与单线态氧(singlet oxygen)就是其中的两个例子。.

新!!: 碱金属和激发态 · 查看更多 »

木星

|G1.

新!!: 碱金属和木星 · 查看更多 »

有机钠化学

有机钠化学是研究含有碳-钠键的金属有机化合物(即有机钠化合物)化学的学科。 有机钠化合物的应用因为与有机锂化合物(同样位于元素周期表IA族)竞争而收到部分限制。尽管如此仍存在几种重要的化合物。 碳与碱金属原子形成的化学具有很强的极性,而碳原子具有强的亲核性(比较电负性,碳为2.55,而锂0.98、钠0.93、钾0.82、铷0.82)。最重要的有机钠化合物是环戊二烯基钠,它可以通过金属钠与环戊二烯反应来制备: 更高级别的碱金属甚至可与非活性的烃类发生金属化反应,而且还可发生自身金属化反应: 另一个副反应是β-消除反应: 这类化合物具有的碳负离子的性质可以通过共振来使之稳定,比如三苯甲基钠(Ph3CNa)这类化合物。 金属钠还能与烃发生单电子还原反应。与萘反应得到萘钠溶液。 在Wanklyn反应(1858)中 ,钠代替了镁与二氧化碳进行类似于格氏试剂的反应: 最早制得的烷基钠是通过二烷基化合物(比如二乙基汞)进行Schorigin反应或Shorygin反应制备的 :.

新!!: 碱金属和有机钠化学 · 查看更多 »

有机锂试剂

有机锂试剂是含有碳原子与锂原子直接成键的一类有机金属化合物。锂原子具有天然的电正性,因此有机锂化合物的大部分电荷密度被推向了化学键上的碳原子一端,从而易形成碳负离子。有机锂化合物是一种极强的碱和亲核试剂。.

新!!: 碱金属和有机锂试剂 · 查看更多 »

有机溶剂

有機化合物作為溶劑時,這個有機物就簡稱為有機溶劑。常見的有機溶劑有乙醚、二氯甲烷、苯、四氯甲烷、氯仿等。.

新!!: 碱金属和有机溶剂 · 查看更多 »

有效核电荷

有效核电荷是指在多电子原子中,某一个电子所受的净正电荷。这个概念是基于屏蔽作用理论而存在:由于共同带有负电荷的内外层电子之间存在排斥力,内层电子“阻挡”了一部分外层电子与原子核之间的正负电荷吸引力。应用这个概念,可以直接根据原子的氧化值判断核电荷的强度。 在单电子原子中,电子受到原子核中全部正电荷的吸引(即屏蔽作用不存在)。这种情况下,有效核电荷可以直接应用库仑定律计算。然而,在多电子原子中,处于外层的电子既受到正电荷的吸引,同时也被处于内层带负电荷的电子排斥。此时,其中一个电子所受的有效核电荷可以用以下公式求得: 其中 S 可以通过许多方法求得,其中最简单的一种被称作“斯莱特定则”(以化学家约翰·C·斯莱特命名)。 另外,道格拉斯·哈特里将哈特里-福克轨道的有效核电荷定义为: 其中 H 是氢原子的平均半径,而 Z 是带有Z个核电荷的原子中、所研究的轨道的平均半径。 备注: Zeff 也常被记作 Z*.

新!!: 碱金属和有效核电荷 · 查看更多 »

戈亚尼亚

戈亚尼亚(葡萄牙语:Goiânia)是巴西中部戈亚斯州的首府和最大城市,人口约125万。 Category:巴西城市.

新!!: 碱金属和戈亚尼亚 · 查看更多 »

海床

海床(sea floor,也被稱為海底、洋底ocean floor)是指海洋的底部,海洋板塊構成的地殼表面,它對陸地形態的演變及地質史有重要影響。.

新!!: 碱金属和海床 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

新!!: 碱金属和海王星 · 查看更多 »

海水

海水即是海洋內的水,佔據地球水體的97%,一公升海水有約35公克的鹽溶於其中,還有少量的微量元素。海水是複雜的溶液,並且會隨著時間變動,例如地球早期的海水是酸性的,而非現在因為融入大量鹽類物質而呈現的鹼性,但近代以來人類活動使海水水質出現過度變動,例如海洋酸化等問題,威脅著海洋生態系統的未來。.

新!!: 碱金属和海水 · 查看更多 »

浓度

濃度指某物質在總量中所占的分量。 常用的浓度表示法有: 次數.

新!!: 碱金属和浓度 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 碱金属和施普林格科学+商业媒体 · 查看更多 »

族 (化学)

元素週期表中的列稱為族。長式週期表分為18族。 同一族中的元素(尤其是主族元素),物理性質和化學性質呈現一定的相似性。因為它們的價電子構型相似,而價電子構型一般都會決定元素的性質。當然,由於元素處在不同的週期,它們的性質也會有一定的遞變性。.

新!!: 碱金属和族 (化学) · 查看更多 »

摄氏温标

摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.

新!!: 碱金属和摄氏温标 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 碱金属和放射性 · 查看更多 »

放射性同位素

放射性同位素(radionuclide,或radioactive nuclide),一種具有放射性的核素。是一種原子核不穩定的原子,每個原子也有很多同位素,每組同位素的原子序雖然是相同,但是卻有著不同的原子量,如果這原子是有放射性的話,它會被稱為物理放射性核種或放射性同位素。放射性同位素會進行放射性衰變,從而放射出伽瑪射線,和次原子粒子。 化學家和生物學家都把放射性同位素的技術應用在我們的食品、水和身體健康等事項上。不過他們也察覺到危險性,因而制訂使用的安全守則。有些放射性同位素是天然存在的,有些則是人工製造的,稱為人造放射性同位素。.

新!!: 碱金属和放射性同位素 · 查看更多 »

放热反应

放熱反應(Exothermic reaction)是釋出熱量的一类化学反应,与吸热反应相对。在放熱反應中,破壞化学键所用的能量是少於組成鍵所釋放的能量。放熱反應的通式为: 在化學的系統中,絕對能量總值是難以量度或計算。所以,一般用焓變(ΔH)来表示化学反应的热效应。在放熱反應中,反应物能量较高,生成物能量较低,較小的數值減去較大的數值便得出ΔH的數值為負數。 例如氫氣(H2)燃燒: 2H2(g) + O2(g) → 2 H2O(g) ΔH.

新!!: 碱金属和放热反应 · 查看更多 »

扩展元素周期表

前的元素周期表中有七個周期,並以118號元素Og終結。如果有更高原子序數的元素被發現,則它將會被置於第八周期,甚至第九周期。這額外的周期預期將會比第七周期容納更多的元素,因為經過計算新的g區將會出現。g區將容納18個元素,各周期中均存在部分填滿的g原子軌域。這種擁有八個周期的元素表最初由格倫·西奧多·西博格于1969年提出。 第八或以上周期的元素未曾被合成或于自然發現。(2008年4月,有人宣稱發現122號元素Ubb存在于自然界中,但此被廣泛認為是錯誤的。)g區内第一個元素的原子序數應該為121。根據IUPAC元素系統命名法命名為unbiunium,符號Ubu。此區域内的元素很可能高度不穩定,並具有放射性,且半衰期極短。然而稳定岛理论預測126號元素Ubh會在穩定島内,不會有核裂變,但會有α衰變。而穩定島以外還能存在多少物理上可能的元素至今仍沒有結論。 根據量子力學對於原子結構解釋的軌域近似法,g區會對應不完全填滿的g軌域。不過,自旋-軌道作用會削弱軌域近似法所得結果的正確性,這可能會發生在較大原子序的元素上。.

新!!: 碱金属和扩展元素周期表 · 查看更多 »

急性辐射综合症

急性辐射综合症,也被称为辐射中毒或辐射病(英文缩写ARS),是一种患者在24小时内暴露于大剂量的游离辐射下导致的症候群,症状可持续多达数个月。 本术语意指急性医疗问题,而不是产生于长期辐射暴露的慢性辐射综合症。 发病和症状类型取决于患者的辐射暴露情况。剂量较小的辐射对消化系统产生影响,比如恶心,呕吐,血指数下降的相关症状如感染和出血。大剂量的照射会导致神经系统损伤症状和快速死亡。治疗急性辐射综合症的一般方法为输血和抗生素。 引发慢性辐射综合症的低剂量辐射,虽不能导致急性综合症,但经年累月的照射下也可能出现类似的症状。 辐射暴露同时也会提升某些其他疾病的罹患機率,比如癌症。 这些疾病有时也被作为辐射病来提及,但它们从不被包含在急性辐射综合症中。.

新!!: 碱金属和急性辐射综合症 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

新!!: 碱金属和晶体结构 · 查看更多 »

晶格能

離子化合物的晶格能是指在標準條件下,它在气态的状态下,成分離子(阴离子和阳离子)被分开時所需要的能量。离子半径越小,晶格能越大。而离子的电荷越大,晶格能就越大。晶格能通常不能直接测出,但可通过玻恩-哈伯循环计算出。 Category:能量 Category:固体化学.

新!!: 碱金属和晶格能 · 查看更多 »

12-冠-4

12-冠-4,也称作1,4,7,10-四氧杂环十二烷或锂离子载体V,是一种化学式为C8H16O4的冠醚。它是环氧乙烷的环状四聚体,大小与锂离子的半径匹配。.

新!!: 碱金属和12-冠-4 · 查看更多 »

15-冠-5

15-冠-5是一种冠醚,化学式为C10H20O5。它是环氧乙烷的环状五聚体,可以与多种离子形成配合物,包括钠离子和钾离子,但与铅离子选择性结合。 作为含特殊官能团的化合物,人们正在研究它在液晶、离子选择性透过膜、生色团和荧光离子载体等领域的应用。.

新!!: 碱金属和15-冠-5 · 查看更多 »

18-冠-6

18-冠-6,系统命名1,4,7,10,13,16-六氧杂环十八烷,是一个冠醚。.

新!!: 碱金属和18-冠-6 · 查看更多 »

2.2.2-穴醚

-- 穴醚是穴状配体螯合剂中最重要的成员之一。在无机化学命名法(2005)中,IUPAC建议缩写为"crypt-222"。.

新!!: 碱金属和2.2.2-穴醚 · 查看更多 »

3氦過程

3氦過程是3個氦原子核(α粒子)轉換成碳原子核的過程。 這種核融合反應可以在超過一億K的高溫和氦含量豐富的恆星內部迅速的發生。同樣的,它發生在較老年,經由質子-質子鏈反應和碳氮氧循環產生的氦,累積在核心的恆星。在核心的氫已經燃燒完後,核心將塌縮,直到溫度達到氦燃燒的燃點。 這個過程釋放出的淨能量為7.275 MeV。 在第一個階段形成的8Be是不穩定的,會經歷2.6×10-16秒就再分裂回氦,但是在氦燃燒能形成8Be的條件下,只要有微小的平衡豐度,就能再捕獲一個氦原子核形成12C。這種結合三個氦原子核轉換成碳的過程就稱為3氦過程。 由於3氦過程需要較長的時間才能形成碳,因此在太初核合成不太可能發生。此一結果可以說明大霹靂為何沒有製造出碳,因為在大霹靂之後的一分鐘,就已經低於核融合所需要的溫度了。 通常,3氦過程發生的可能性是非常低的,但是鈹-8在基態的能量幾乎就是氦的兩倍。在第二個階段,8Be + 4He幾乎就是碳在激發態下的能量。這種共振的狀態,使接踵而來的氦和鈹結合成碳的可能性大為增加。這種共振的存在被觀測到之前,基於物理上的必要性,為了在恆星內形成碳,弗雷德·霍伊爾就已經預測到了。實際上,這種能量共振和過程的預測然後真的被發現,對霍伊爾恆星核合成的假說:假設所有的化學元素都是從最初的氫-真正的原始物質-形成的,提供了非常重大的支持。 在過程中的一些副作用是,一些碳元素可能會和氦融合產生穩定的氧同位素,並且釋放出能量: 接下來的反應鏈是氧會再與氦結合生成氖,但再繼續下去就有困難了,因為核自旋規律的限制,結果使得更重的元素不容易在恆星核合成中形成。 這樣的情狀使得恆星核合成創造出來大量的碳和氧,只有一小部分能被轉換成氖和其他更重的元素。氧和碳都是氦燃燒的灰燼,而人擇原理曾被引用來解釋碳和氧在宇宙中被敏感的核共振大量創造出來的事實。 融合的過程能創造的元素只到鐵,更重的(在鐵之外的)元素只要是由中子捕獲創造的。慢中子捕獲(S-過程)生產出大約一半的重元素,另外的一半則可能由快中子捕獲(R-過程)在核塌縮的超新星中創造出來。.

新!!: 碱金属和3氦過程 · 查看更多 »

重定向到这里:

1族鹼金屬鹼金族

传出传入
嘿!我们在Facebook上吧! »