之间矩阵和矩阵指数相似
矩阵和矩阵指数有(在联盟百科)18共同点: 劍橋大學出版社,埃尔米特矩阵,可对角化矩阵,复数,实数,對角矩陣,一般线性群,單位矩陣,共轭转置,矩阵,矩陣範數,线性微分方程,跡,酉矩阵,若尔当标准型,逆矩阵,正交矩阵,方块矩阵。
劍橋大學出版社
劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.
埃尔米特矩阵
埃尔米特矩阵(Hermitian matrix,又译作厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 对于 有: 记做: 例如: 3&2+i\\ 2-i&1 \end 就是一个埃尔米特矩阵。 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。.
埃尔米特矩阵和矩阵 · 埃尔米特矩阵和矩阵指数 ·
可对角化矩阵
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.
可对角化矩阵和矩阵 · 可对角化矩阵和矩阵指数 ·
复数
#重定向 复数 (数学).
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
對角矩陣
對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.
一般线性群
在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.
一般线性群和矩阵 · 一般线性群和矩阵指数 ·
單位矩陣
在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.
共轭转置
矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
矩陣範數
矩陣範數(matrix norm)是數學中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。 矩阵范数却不存在公认唯一的度量方式。.
线性微分方程
线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程: 其中方程左侧的微分算子\mathcal是线性算子,是要解的未知函数,方程的右侧是一个已知函数。如果() 0,那么方程(*)的解的线性组合仍然是解,所有的解构成一个向量空间,称为解空间。这样的方程称为齐次线性微分方程。当不是零函数时,所有的解构成一个仿射空间,由对应的齐次方程的解空间加上一个特解得到。这样的方程称为非齐次线性微分方程。线性微分方程可以是常微分方程,也可以是偏微分方程。.
矩阵和线性微分方程 · 矩阵指数和线性微分方程 ·
跡
在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.
酉矩阵
若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.
若尔当标准型
在线性代数中,若尔当标准型(英語:Jordan normal form)或称若尔当正规型(英語:Jordan canonical form)是某個線性映射在有限維向量空間上的特別的矩陣表達形式,稱作若尔当矩陣(Jordan matrix),這矩陣接近对角矩阵:除了主对角线和主对角线上方元素之外,其餘都是零且主對角線上方的對角線的係數若不為零--能為1,且這1左方和下方的係數(都在主對角線上)有相同的值。谱定理和正规矩阵都是若尔当标准型的特殊情况,因為可以被對角化(diagonalizable)。若尔当矩阵理论说明了任何一个系数域为\mathbb的方块矩阵M如果特征值都在\mathbb中,那么必然和某个若尔当标准型相似。或者说,如果一个有限維向量空間上的自同态線性映射的特征值都在系数域\mathbb中,那么它可以在某个基底下表示成若尔当标准型。 若尔当标准型得名于十九世纪后期的法国数学家卡米尔·若尔当。.
矩阵和若尔当标准型 · 矩阵指数和若尔当标准型 ·
逆矩阵
逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.
正交矩阵
在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.
方块矩阵
方塊矩陣,或简称方阵,是行數及列數皆相同的矩陣。由n \times n\,矩陣組成的集合,連同矩陣加法和矩陣乘法,构成環。除了n.
上面的列表回答下列问题
- 什么矩阵和矩阵指数的共同点。
- 什么是矩阵和矩阵指数之间的相似性
矩阵和矩阵指数之间的比较
矩阵有194个关系,而矩阵指数有39个。由于它们的共同之处18,杰卡德指数为7.73% = 18 / (194 + 39)。
参考
本文介绍矩阵和矩阵指数之间的关系。要访问该信息提取每篇文章,请访问: