徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

矩阵

指数 矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

194 关系: 劍橋大學出版社加布里尔·克拉默力学基 (線性代數)基本粒子埃尔米特矩阵偏微分方程博弈论协方差协方差矩阵卡比博-小林-益川矩阵反對稱矩陣反射 (物理学)反函数定理可对角化矩阵可逆元可數集台灣双射吸引子同构合同矩阵向量多項式多项式环复杂网络复数天体物理学夸克奧古斯丁·路易·柯西奇异值分解子式和余子式子群实数对偶空间密碼 (密碼學)對稱對角矩陣中国大陆希尔密码东汉三角矩阵一般线性群九章算术交换环交換律二元运算二次型二次规划应用数学...代數 (環論)弱相互作用伴随矩阵張量当且仅当化学键化學北京师范大学附属中学像 (數學)初等矩阵分塊矩陣分子轨道分配律單位元單位矩陣哈特里-福克方程儒勒·昂利·庞加莱凱萊-哈密頓定理共轭转置共轭梯度法关孝和光学光學頻譜光線傳輸矩陣光轴 (光学)克萊姆法則四元數矩形矩阵矩阵分解矩阵的平方根矩阵环矩阵指数矩陣力學矩陣理論矩陣範數环 (代数)秩 (线性代数)秩-零化度定理稀疏矩阵符号算法節點分析粒子加速器系数索引典線性函數级数线性微分方程线性映射线性方程组统计学经济学绝对值结合律编码理论置换群罗特汉方程美國數學學會群表示論点积电子学物理学特征向量特征分解特征值和特征向量特徵多項式特殊酉群相似盖尔曼矩阵随机矩阵行列式规范群马尔可夫链詹姆斯·約瑟夫·西爾維斯特计算机科学谱定理质量费米子距离矩阵运动方程迭代近軸近似舒尔分解阶梯形矩阵阻抗阿瑟·凱萊邻接矩阵错切重叠矩阵量子力学量子场论量子色動力學自由模镜面反射 (数学)酉矩阵若尔当标准型零空间零維空間電路學集合 (数学)雅可比矩阵透镜逆矩阵LU分解TF-IDF极限 (序列)控制论描述统计学歐萊禮正交矩阵正交群正态分布江泽涵泡利矩陣波粒二象性泰勒级数洛伦兹群挤压有限域有限元分析有限群最小二乘法明尼苏达大学海森矩阵方块矩阵方程组斜率文本挖掘旋转旋量旋量群散射矩阵数学数值分析数值稳定性数值线性代数数论拉丁字母拉普拉斯展开 扩展索引 (144 更多) »

劍橋大學出版社

劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.

新!!: 矩阵和劍橋大學出版社 · 查看更多 »

加布里尔·克拉默

加百列·克萊姆(Gabriel Cramer,台灣教科書多譯作克拉瑪。1704年7月31日於日內瓦出生,1752年1月4日於法國塞兹河畔巴尼奥勒逝世),瑞士數學家, 克萊姆早年在日内瓦读书,1724年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自1727年进行为期两年的旅行访学。在巴塞尔与约翰·伯努利、欧拉等人学习交流,结为挚友。後又到英国、荷兰、法国等地拜见许多数学名家,回国後在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先後当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。首先定义了正则、非正则、超越曲线和无理曲线等概念,第一 次正式引入坐标系的纵轴(Y轴),然後讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。为了确定经过5个点的一般二次曲线的系数,应用了著名的「克莱姆法则」,即由缐性方程组的系数确定方程组解的表达式。该法则於1729年由英国数学家马克劳林得到,1748年发表,但克莱姆的优越符号使之流传。其最著名的工作是他1750年發表在代數曲線方面的權威之作;它最早證明一個第n度的曲線是由:n(n + 3)/2點來決定。.

新!!: 矩阵和加布里尔·克拉默 · 查看更多 »

力学

力学是物理学的一个分支,主要研究能量和力以及它们与物体的平衡、变形或运动的关系。.

新!!: 矩阵和力学 · 查看更多 »

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

新!!: 矩阵和基 (線性代數) · 查看更多 »

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 矩阵和基本粒子 · 查看更多 »

埃尔米特矩阵

埃尔米特矩阵(Hermitian matrix,又译作厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 对于 有: 记做: 例如: 3&2+i\\ 2-i&1 \end 就是一个埃尔米特矩阵。 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。.

新!!: 矩阵和埃尔米特矩阵 · 查看更多 »

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

新!!: 矩阵和偏微分方程 · 查看更多 »

博弈论

賽局理論(game theory),又譯為对策论,或者--,经济学的一个分支,1944年馮·諾伊曼與奧斯卡·摩根斯特恩合著《博弈論與經濟行為》,標誌著現代系統博弈理論的的初步形成,因此他被稱為「博弈論之父」。博弈論被認為是20世紀經濟學最偉大的成果之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是運籌學的一个重要学科。.

新!!: 矩阵和博弈论 · 查看更多 »

协方差

共變異數(Covariance)在概率論和統計學中用於衡量兩個變量的总体误差。而方差是协方差的一種特殊情況,即當兩個變量是相同的情況。 期望值分别为E(X).

新!!: 矩阵和协方差 · 查看更多 »

协方差矩阵

在统计学与概率论中,共變異數矩阵(也称离差矩阵、方差-协方差矩阵)是一个矩阵,其 i, j 位置的元素是第 i 个与第 j 个(即随机变量构成的向量)之间的共變異數。这是从标量随机变量到高维度随机向量的自然推广。.

新!!: 矩阵和协方差矩阵 · 查看更多 »

卡比博-小林-益川矩阵

卡比博-小林-益川矩阵(Cabibbo-Kobayashi-Maskawa,CKM或KM matrix)是粒子物理标准模型的一个重要组成成份,它表征了顶类型和底类型夸克间通过W粒子弱相互作用的耦合强度。对二代夸克情形,它是由意大利物理学家卡比博在1963年首先给出的,通常被称为卡比博矩阵或卡比博角。1973年日本物理学家小林诚和益川敏英把它推广到三代夸克。三代矩阵含有相位,可以用来解释弱相互作用中的电荷宇称对称性破缺(CP破坏),也被经常用来解释宇宙重子数不对称。CKM矩阵在轻子中的对应是牧-中川-坂田矩阵(Maki-Nakagawa-Sakata或MNS)。.

新!!: 矩阵和卡比博-小林-益川矩阵 · 查看更多 »

反對稱矩陣

在線性代數中,反對稱矩陣(或稱斜對稱矩陣)是一個方形矩陣,其轉置矩陣和自身的加法逆元相等。其滿足: 或寫作A.

新!!: 矩阵和反對稱矩陣 · 查看更多 »

反射 (物理学)

反射(英文:reflection),是一種物理現象,是指波阵面從一個介質進入另一個介質時,在两个介质的界面处,其傳播方向突然改變,而回到其來源的介質。常见的例子包括光、声波和水波的反射。反射定律指出,对于镜面反射,入射角等於反射角,即光線射入時的角度必與光線反射后的角度相等。镜面反射可以通过镜子观察到。 在声学方面,反射会引起回声,这在声纳上得到很好应用。在地质学方面,研究地震波时,反射是十分重要的部分。反射可以在水体的面波上被观察到,也可以在包括可见光在内的多种电磁波上被观察到。甚高频以及更高频的波的反射对于无线电传输和雷达十分重要。甚至硬X射线和伽马射线在角度较浅时,也可以被“擦边”镜反射。.

新!!: 矩阵和反射 (物理学) · 查看更多 »

反函数定理

在数学中,反函数定理给出了向量值函数在含有定义域中一点的开区域内具有反函数的充分条件。该定理还说明了反函数的全导数存在,并给出了一个公式。反函数定理可以推广到定义在流形上、以及定义在无穷维巴拿赫空间(和巴拿赫流形)上的映射。大致地说,C1函数F在点p可逆,如果它的雅可比矩阵JF(p)是可逆的。.

新!!: 矩阵和反函数定理 · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 矩阵和可对角化矩阵 · 查看更多 »

可逆元

单位又被称为可逆元。在數學裡,於一(有单位的)環 R \,內的可逆元是指一 R \,的可逆元素,即一元素 u \,使得存在一於 R \,內的 v \,有下列性質: uv.

新!!: 矩阵和可逆元 · 查看更多 »

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

新!!: 矩阵和可數集 · 查看更多 »

台灣

#重定向 臺灣.

新!!: 矩阵和台灣 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 矩阵和双射 · 查看更多 »

吸引子

吸引子是微积分和系统科学论中的一个概念。一个系统有朝某个稳态发展的趋势,这个稳态就叫做吸引子。吸引子分为平庸吸引子和奇异吸引子。 例如一个钟摆系统,它有一个平庸吸引子,这个吸引子使钟摆系统向停止晃动的稳态发展。 平庸吸引子有不动点(平衡)、极限环(周期运动)和整数维环面(概周期运动)三种模式。而不属于平庸的吸引子的都称为奇异吸引子,它表现了混沌系统中非周期性,无序的系统状态,例如天气系统。 对于吸引子,学术上并没有完善的定义,目前仅处于概念阶段。吸引子中的奇异吸引子对于混沌系统的研究意义重大.

新!!: 矩阵和吸引子 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 矩阵和同构 · 查看更多 »

合同矩阵

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,如果有同数域上的可逆矩阵 P,使得 其中的P^\mathrm表示矩阵P的转置矩阵。 对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。.

新!!: 矩阵和合同矩阵 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 矩阵和向量 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 矩阵和多項式 · 查看更多 »

多项式环

在抽象代數中,多項式環推廣了初等數學中的多項式。一個環 R 上的多項式環是由係數在 R 中的多項式構成的環,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R 為交換環時,多項式環可以被刻劃為交換 R-代數範疇中的自由對象。.

新!!: 矩阵和多项式环 · 查看更多 »

复杂网络

在网络理论的研究中,复杂网络是由数量巨大的节点和节点之间错综复杂的关系共同构成的网络结构。用数学的语言来说,就是一个有着足够复杂的拓扑结构特征的图。复杂网络具有简单网络,如晶格网络、随机图等结构所不具备的特性,而这些特性往往出现在真实世界的网络结构中。复杂网络的研究是现今科学研究中的一个热点,与现实中各类高复杂性系统,如的網際網路、神经网络和社会网络的研究有密切关系。.

新!!: 矩阵和复杂网络 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 矩阵和复数 · 查看更多 »

天体物理学

天體物理學,又稱「天文物理學」,是研究宇宙的物理學,這包括星體的物理性質(光度,密度,溫度,化學成分等等)和星體與星體彼此之間的交互作用。應用物理理論與方法,天體物理學探討恆星結構、恆星演化、太陽系的起源和許多跟宇宙學相關的問題。由於天體物理學是一門很廣泛的學問,天文物理學家通常應用很多不同的學術領域,包括力學、電磁學、統計力學、量子力學、相對論、粒子物理學等等。由於近代跨學科的發展,與化學、生物、歷史、計算機、工程、古生物學、考古學、氣象學等學科的混合,天體物理學目前大小分支大約三百到五百門主要專業分支,成為物理學當中最前沿的龐大領導學科,是引領近代科學及科技重大發展的前導科學,同時也是歷史最悠久的古老傳統科學。 天體物理實驗數據大多數是依賴觀測電磁輻射獲得。比較冷的星體,像星際物質或星際雲會發射無線電波。大爆炸後,經過紅移,遺留下來的微波,稱為宇宙微波背景輻射。研究這些微波需要非常大的無線電望遠鏡。 太空探索大大地擴展了天文學的疆界。太空中的觀測可讓觀測結果避免受到地球大氣層的干擾,科學家常透過使用人造衛星在地球大氣層外進行紅外線、紫外線、伽瑪射線和X射線天文學等電磁波波段的觀測實驗,以獲得更佳的觀測結果。 光學天文學通常使用加裝電荷耦合元件和光譜儀的望遠鏡來做觀測。由於大氣層的擾動會干涉觀測數據的品質,故於地球上的觀測儀器通常必須配備調適光學系統,或改由大氣層外的太空望遠鏡來觀測,才能得到最優良的影像。在這頻域裏,恆星的可見度非常高。藉著觀測化學頻譜,可以分析恆星、星系和星雲的化學成份。 理論天體物理學家的工具包括分析模型和計算機模擬。天文過程的分析模型時常能使學者更深刻地理解箇中奧妙;計算機模擬可以顯現出一些非常複雜的現象或效應其背後的機制。 大爆炸模型的兩個理論棟樑是廣義相對論和宇宙學原理。由於太初核合成理論的成功和宇宙微波背景輻射實驗證實,科學家確定大爆炸模型是正確無誤。最近,學者又創立了ΛCDM模型來解釋宇宙的演化,這模型涵蓋了宇宙暴胀(cosmic inflation)、暗能量、暗物質等等概念。 理論天體物理學家及實測天體物理學家分別扮演這門學科當中的兩大主力研究者,兩者專業分工。理論天體物理學家通常扮演大膽假設的研究者,理論不斷推陳出新,對於數據的驗證關心程度較低,假設程度太高時,經常會演變成偽科學,一般都是天體物理學研究者當中的激進人士。實測天體物理學家通常本身精通理論天體物理,在相當程度上來說也有能力自行發展理論,扮演小心求證的研究者,通常是物理實證主義的奉行者,只相信觀測數據,經常對理論天體物理學所提出的假說進行證偽或證實的活動,一般都是天體物理學研究者當中的保守人士。.

新!!: 矩阵和天体物理学 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 矩阵和夸克 · 查看更多 »

奧古斯丁·路易·柯西

奧古斯丁·路易·柯西(法语:Augustin Louis Cauchy,,法语发音),法國數學家。.

新!!: 矩阵和奧古斯丁·路易·柯西 · 查看更多 »

奇异值分解

奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩陣基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。.

新!!: 矩阵和奇异值分解 · 查看更多 »

子式和余子式

在线性代数中,一个矩阵A的余子式(又称余因式,minor)是指将A的某些行与列去掉之后所余下的方阵的行列式。相应的方阵有时被称为余子阵。 将方阵A的一行与一列去掉之后所得到的余子式可用来获得相应的代数余子式(cofactor),后者在可以通过降低多阶矩阵的阶数来简化矩阵计算,并能和转置矩阵的概念一并用于逆矩阵计算。 不过应当注意的是,余子式和代数余子式两个概念的区别。在数值上,二者的区别在于,余子式只计算去掉某行某列之后剩余行列式的值,而代数余子式则需要考虑去掉的这一个元素对最后值正负所产生的影响。.

新!!: 矩阵和子式和余子式 · 查看更多 »

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

新!!: 矩阵和子群 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 矩阵和实数 · 查看更多 »

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

新!!: 矩阵和对偶空间 · 查看更多 »

密碼 (密碼學)

在密码学中,密碼(cipher,或cypher),是一种用于执行加密或解密的算法——一系列可以作为一个过程来遵循的定义明确的步骤。另一个不太常见的术语是加密(encipherment)。加密或编码(encode)的目的是将明文的信息转换为密文(密码或代码)。 通常的说法中,“密码”(cipher)与“代码”(code)是同义的,因为它们都是一组加密消息的步骤;然而,它们在密码学中的概念是不同的,特别是在经典密码学中。 具体而言,代码通常会在输出中替换不同长度的字符串,其操作一般通过代码本来进行,它将单词或短语链接到一系列随机的字符串或数字。例如,“UQJHSE”可能是“继续执行以下坐标”的代码。 而相应的,密码一般会替换与输入相同数量的字符。一些例外情况中,某些密码系统在输出时可能会使用稍多或更少的字符,而非输入的长度。当使用密码时,原始信息被称为明文(plain text),而加密的形式被称为密文(cipher text)。密文消息包含明文消息的所有信息,但若没有适当的机制解密它,人或计算机是不能读取的。 密码的操作通常取决于一个辅助信息,称为“密钥”(或者,按照传统 NSA 的说法,密码变量——cryptovariable)。加密过程根据密钥而变化,它改变了算法的具体操作。在使用密码加密消息之前,必须选择一个密钥。在不知道密钥的情况下,将结果密文解密为可读的明文应该是非常困难的(甚至是不可实现的)。 大多数现代密码可以用几种方式分类:.

新!!: 矩阵和密碼 (密碼學) · 查看更多 »

對稱

對稱是幾何形狀、系統、方程以及其他實際上或概念上之客體的一種特徵-典型地,物件的一半為其另一半的鏡射。 在數理上,如果稱一個幾何圖形或物體為對稱的話,即表示它是變形的不變量,而對稱一詞亦包含在此定義之中。若兩個物體稱為互相對稱時,即表示其中一者的形狀經幾何分割後,在不變更整體形狀的情況下,可以將分割片段重組為另一者,且反之亦然。 對稱亦可在人類與其他動物等生物體中發現(見如下之生物內的對稱)。在二維幾何中,較有趣味的幾種主要的對稱為相對於基本之歐幾里得空間等距的:平移、旋轉、鏡射及滑移鏡射。.

新!!: 矩阵和對稱 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

新!!: 矩阵和對角矩陣 · 查看更多 »

中国大陆

中國大陸,中文使用上常通稱大陸或大陸地區,中华人民共和国政府官方有时也使用祖国大陆。此詞的使用在古代即有,非現代两岸关系中具有政治含义的大陆,而是中原文化圈中相對海洋島嶼的地理用詞。如在日本也有大陸文化的說法,二戰時曾用來稱呼中國外,至今以大陸代稱的用法在學術上仍有在使用。在海外的華人移民圈也有不少使用此用法的人。 在當代的使用上,指的是中華人民共和國政府直接管轄的區域。此肇因於第二次國共內戰後,1949年中華人民共和國政府成立所導致的海峽兩岸政治分立。 地理上,該詞是指中國的大陸領土,屬於歐亞大陸的一部分的事实,與海島相對;但當代的使用上,其做為一個政治名詞的用途遠大於地理名詞,指的是中華人民共和國政府直接管轄的區域,故海南島、舟山群島等中華人民共和國之海洋及海島領土,都被視為中國大陸的一部分,香港、澳門這兩個特別行政區以及「台灣」則排除在外。使用情形類似的還有「中国内地」一詞。 另一方面,第二次國共內戰後撤退至臺灣的中華民國政府,在法律上仍然主張中國大陸為其疆域,在《中華民國憲法增修條文》、《兩岸人民關係條例》等法律中稱為「大陸地區」、並定義為「臺灣地區以外之中華民國領土」,同時否認中華人民共和國為獨立之主權國家,而僅將其視為統治中國大陸之政治實體;在陳水扁政府上台前,中華民國政府認定的「大陸地區」還包括在1946年就已獨立建國的外蒙古、以及中俄邊境的爭議領土。香港與澳門因政治地位特殊,在法律上又另外以「港澳地區」合稱。 中華民國政府對中國大陸的定義,是中國國民黨執政時期一中各表、憲法一中等兩岸政策的重要基礎。而民主進步黨執政時期,由於其政治立場偏向臺灣獨立及臺灣主體性,此主張並不活躍,尤其在陳水扁政府時期起,主要以一邊一國思維處理兩岸關係,直接將中華人民共和國(中國)視為與中華民國(台灣)分立的國家。也讓大陸這個地理代稱用法再增添更多政治含义。.

新!!: 矩阵和中国大陆 · 查看更多 »

希尔密码

希爾密碼是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。 每個字母當作26進制數字:A.

新!!: 矩阵和希尔密码 · 查看更多 »

东汉

东汉(25年-220年)是由刘秀建立的中国古代的一个朝代,与西汉合称兩漢。東漢与西漢之間为新朝,後为東漢所取代。西汉建都长安,東漢建都洛陽,故而得名。東漢是當時世界上的強大國家,而前期六十多年的光武中興和明章之治,亦是中國史上的盛世之一。 由於東漢中後期的帝王普遍壽命不長,而且不少是幼年即位,導致汉和帝以后至汉末近百年间,外戚及宦官轮流执政,成為固定的惡性循環,兩派互相残杀,把东汉朝廷弄得十分腐败。東漢中平六年(189年),外戚大將軍何进遭宦官十常侍所殺,後军阀董卓引兵到雒陽,除十常侍,废少帝刘辩,杀何太后,立汉献帝。长期左右东汉皇室的外戚、宦官一起被消灭,但卻引起了各地諸侯群雄割據的局面,漢廷不再握有實權,漢献帝從此成為傀儡,其后被曹操控制,最後汉室被曹魏取代。 東漢在文化、军事等方面亦有显著成就。著名的有班超出使西域,在西域長駐了三十多年,先後擊破了被匈奴控制的西域諸國,不但令西域諸國一一歸順漢朝,並開拓了東西文化的交流。期間他還派出甘英出使西域的大秦國,雖未有成功,但足跡已達今日波斯灣諸國。 另外,东汉在91年灭北匈奴。南匈奴内附漢朝。216年,南匈奴最后一個呼厨泉单于去邺城拜见曹操,曹操分南匈奴为五部,匈奴汗国不复存在,困扰汉朝数百年的北方外患終告一段落。 同時佛教也在這段期間傳入中國。根據記載,汉哀帝元壽元年(前2年)博士弟子景盧出使大月氏,其王使人口授《浮屠經》。到了東漢永平十年(67年),漢明帝派人去西域,迎來兩位高僧,並且帶來了許多佛像和佛经,用白馬駝迴首都雒陽,皇帝命人修建房屋供其居住,翻譯佛經。也就是現在的白马寺。.

新!!: 矩阵和东汉 · 查看更多 »

三角矩阵

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。.

新!!: 矩阵和三角矩阵 · 查看更多 »

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

新!!: 矩阵和一般线性群 · 查看更多 »

九章算术

《九章算术》九卷,是現存最早的中國古代数学著作之一,《算经十书》中最重要的一种。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的。在四庫全書中為子部天文演算法算書類。 《九章算术》內容豐富,題材廣泛,共九章,分為二百四十六題二百零二術,不但是漢代重要的數學著作。在中國和世界數學史上佔有重要的地位。作為中國古代數學的系統總結,對中國傳統數學的發展有了深遠的影響。.

新!!: 矩阵和九章算术 · 查看更多 »

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

新!!: 矩阵和交换环 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 矩阵和交換律 · 查看更多 »

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

新!!: 矩阵和二元运算 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 矩阵和二次型 · 查看更多 »

二次规划

二次规划(Quadratic programming),在运筹学当中,是一种特殊类型的最佳化问题。.

新!!: 矩阵和二次规划 · 查看更多 »

应用数学

應用數學(Applied Mathematics)是以應用為目的的明確的數學理論和方法的總稱,研究如何應用數學知識到其他範疇(尤其是科學)的數學分支,可以說是純數學的相反,應用純數學中的結論擴展到物理學等其他科學中,應用數學的發展是以科學為依據,作為科學研究的後盾。包括線性代數、矩陣理論、向量分析、複變分析、微分方程、拉普拉斯變換、傅里葉分析、數值分析、概率论、數理統計、運籌學、博弈論、控制理論、組合數學、資訊理論等許多數學分支,也包括從各種應用領域中提出的數學問題的研究。而大部分應用數學是以作為物理分析的工具。計算數學有時也可視為應用數學的一部分。應用數學大部分的教學範疇都是以物理的模型為基礎進行分析,當中或許搭配了各種數學工具,就為了更貼近物理的系統。 圖論應用在網絡分析,拓撲學在電路分析上的應用,群論在結晶學上的應用,微分幾何在規範場上的應用,自動控制理論在計算上的應用,黎曼幾何應用於相對論,數理邏輯應用於計算機,最小二乘法應用於飛機起降時自動控制,利用數字合成計算機輔助的X射線斷層成像技術(1979年數學家獲得諾貝爾醫學獎)數論應用在密碼學,博弈論、概率論、統計學應用在經濟學,線性規劃用於生產安排調度,都可見數學在不同範疇的應用。.

新!!: 矩阵和应用数学 · 查看更多 »

代數 (環論)

在數學中,交換環上的代數或多元環是一種代數結構,上下文不致混淆時通常逕稱代數。 本頁面中的環都是指有單位的環,並使用么環一詞表示則是不一定有單位的環。.

新!!: 矩阵和代數 (環論) · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 矩阵和弱相互作用 · 查看更多 »

伴随矩阵

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。.

新!!: 矩阵和伴随矩阵 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 矩阵和張量 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 矩阵和当且仅当 · 查看更多 »

化学键

化學鍵(Chemical Bond)是一種粒子間的吸引力,其中粒子可以是原子或分子。透過化學鍵,粒子可組成多原子的化學物質。鍵由兩相反電荷間的電磁力引起,電荷可能來自電子和原子核,或由偶極子造成。化學鍵種類繁多,其能量大小、鍵長亦有所不同。 在原子中,帶負電、繞原子核運行的電子與核內帶正電的質子互相吸引,而位於兩原子核之間的電子則皆受兩方吸引。因此,原子核和電子間最穩定的組態,是當電子位處兩原子核間之時。這些電子使原子核能夠彼此相吸,形成所謂的化學鍵。然而,化學鍵並不能減少個別粒子所構成的體積。由於電子的質量較小且具有物質波性質,它們相較於原子核而言佔據了極大部分的體積,使原子核之間距離較遠。 一般而言,強化學鍵的形成伴隨著原子間電子的共用或轉移。分子、晶體、金屬和雙原子氣體,事實上幾乎生活中所有外在環境,都是由化學鍵所維繫而來;它決定了物質的結構。.

新!!: 矩阵和化学键 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 矩阵和化學 · 查看更多 »

北京师范大学附属中学

北京师范大学附属中学,简称北师大附中或师大附中(该校校友直呼其“附中”),成立于1901年,迄今已有百余年历史。北师大附中是中国最早的公立西式学堂,为清政府大员直接建立,也是中華人民共和國教育部直属北京师范大学的第一附中,具有中国第一部民用电话(因为中国最早的电话局建在学校对面)。也是中国第一所实行三三学制的中学。該校现为北京市重点中学,学风自由,是全中国顶尖的中等学府之一。北京师范大学附属中学在2016年中国内地高中美国留学排行榜上位居第七 。 师大附中地处北京市西城区和平门南新华街,紧邻北京市著名的字画古街大栅栏,文化底蕴极为浓郁。学校占地面积余额四万三千八百七十七平方米,总建筑面积四万八千零七十八平方米。學校拥有完善的教学设施,分别是教学楼、综合实验楼、宿舍楼、百年附中会堂、运动场等。学校分设高中部和初中部,总计教学班五十余个,在校学生两千余人,并有百余名外国留学生。.

新!!: 矩阵和北京师范大学附属中学 · 查看更多 »

像 (數學)

在数学中,像是一個跟函数相關的用語。.

新!!: 矩阵和像 (數學) · 查看更多 »

初等矩阵

线性代数中,初等矩阵(又稱為基本矩陣)是一个与单位矩阵只有微小区别的矩阵。具体来说,一个n阶单位矩阵E经过一次初等行变换或一次初等列变换所得矩阵称为n阶初等矩阵。.

新!!: 矩阵和初等矩阵 · 查看更多 »

分塊矩陣

在數學的矩陣理論中,一個分塊矩陣或是分段矩陣就是將矩陣分割出較小的矩形矩陣,這些較小的矩陣就稱為區塊。換個方式來說,就是以較小的矩陣組合成一個矩陣。分塊矩陣的分割原則是以水平線和垂直線進行劃分。分塊矩陣中,位在同一行(列)的每一個子矩陣,都擁有相同的列數(行數)。 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。.

新!!: 矩阵和分塊矩陣 · 查看更多 »

分子轨道

分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.

新!!: 矩阵和分子轨道 · 查看更多 »

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

新!!: 矩阵和分配律 · 查看更多 »

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

新!!: 矩阵和單位元 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 矩阵和單位矩陣 · 查看更多 »

哈特里-福克方程

哈特里-福克方程(Hartree–Fock equation),又称为HF方程,是一个应用变分法计算波函数的方程式,是量子物理、凝聚態物理學、量子化学中最重要的方程之一。HF方程形式上是单电子本征方程,求得的本征态是单电子波函数,即分子轨道。以HF方程为核心的数值计算方法称为“哈特里-福克方法”(Hartree–Fock method)。 基于分子轨道理论的所有量子化学计算方法都是以HF方法为基础的。鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程被视为现代量子化学的基石。.

新!!: 矩阵和哈特里-福克方程 · 查看更多 »

儒勒·昂利·庞加莱

儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.

新!!: 矩阵和儒勒·昂利·庞加莱 · 查看更多 »

凱萊-哈密頓定理

在線性代數中,凱萊-哈密頓定理(Cayley–Hamilton theorem)(以數學家阿瑟·凱萊與威廉·卢云·哈密顿命名)表明每個佈於任何交換環上的實或複方陣都滿足其特徵方程式。 明確地說:設 A 為給定的 n \times n 矩陣,並設 I_n 為 n \times n 單位矩陣,則 A 的特徵多項式定義為: 其中 det 表行列式函數。凱萊-哈密頓定理斷言: 凱萊-哈密頓定理等價於方陣的特徵多項式會被其極小多項式整除,這在尋找若尔当标准形時特別有用。.

新!!: 矩阵和凱萊-哈密頓定理 · 查看更多 »

共轭转置

矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.

新!!: 矩阵和共轭转置 · 查看更多 »

共轭梯度法

共轭梯度法(Conjugate gradient method),是求解系数矩阵为对称正定矩阵的线性方程组的数值解的方法。共轭梯度法是一个迭代方法,它适用于系数矩阵为稀疏矩阵的线性方程组,因为使用像Cholesky分解这样的直接方法求解这些系统所需的计算量太大了。这种方程组在数值求解偏微分方程时很常见。 共轭梯度法也可以用于求解无约束的最優化问题。 双共轭梯度法(BiConjugate gradient method)提供了一种处理非对称矩阵情况的推广。.

新!!: 矩阵和共轭梯度法 · 查看更多 »

关孝和

孝和(),又名新助,字子豹,號自由亭,是日本江戶時代的數學家。關孝和在日本數學史上有重要地位,是數學流派“關流”的開山鼻祖,被日本人稱為“算聖”。他的主要貢獻包括發展了筆算代數“傍書法”,提出方程組求解理論并發展出行列式、判別式等概念,建立有關圓弧和球的幾何問題的理論(後來被稱為“圓理”)等等。主要著作有《发微算法》、《括要算法》(死後由弟子出版)、《三部抄》、《七部书》(弟子間秘密流傳)等等。.

新!!: 矩阵和关孝和 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 矩阵和光学 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 矩阵和光學頻譜 · 查看更多 »

光線傳輸矩陣

#重定向 光線轉換矩陣分析.

新!!: 矩阵和光線傳輸矩陣 · 查看更多 »

光轴 (光学)

光轴是光學系統中,一條假想的線,定義(在一次近似下)光學系統如何傳導光線。光線若和光轴重合,在光學系統中光將沿光轴傳遞。 若此光學系統有一定程度的(像相機鏡頭或是顯微鏡),光轴一般會是光學系統的旋轉中心,若光學系統是由簡單的透鏡和反射鏡組成,光轴會通過各平面的曲率中心(如焦點),和軸重合。光轴一般會和系統的機械中心重合,但也有例外,例如離軸光學系統。 若光線和光轴角度很小,而光線接近光學系統的軸,可以用幾何光學中的近軸近似來處理,可以簡化數學的運算。 在光纖中,光轴會和重合,也稱為光纖軸。.

新!!: 矩阵和光轴 (光学) · 查看更多 »

克萊姆法則

克萊姆法則(Cramer's rule),又稱為克拉瑪公式,是一個線性代數中的定理,用行列式來計算出線性等式組中的所有解。這個定理因加百列·克萊姆(1704年 - 1752年)的卓越使用而命名。在計算上,並非最有效率之法,所以在很多條等式的情況中沒有廣泛應用。不過,這定理在理論性方面十分有用。.

新!!: 矩阵和克萊姆法則 · 查看更多 »

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

新!!: 矩阵和四元數 · 查看更多 »

矩形

在几何中,矩形定义为有一个角是直角的平行四边形,即是正方形和长方形。 在四邊形中,四邊相等且四個角是直角的,叫做正方形。 在四邊形中,角是直角,但對邊等長,叫做長方形。 ──歐幾里得《幾何原本》 从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。正方形是四個邊都等長的矩形,它的四个边都是等长的。 对于长方形两对相对的边,我们称横边为长,竖边为宽。长方形的面积是长和宽的乘积;用符号表示就是:A.

新!!: 矩阵和矩形 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 矩阵和矩阵 · 查看更多 »

矩阵分解

矩阵分解(decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同,可分为几类。.

新!!: 矩阵和矩阵分解 · 查看更多 »

矩阵的平方根

在数学中,矩阵的平方根是算术中的平方根概念的推广。对一个矩阵A,如果矩阵B满足 那么矩阵B就是A的一个平方根。.

新!!: 矩阵和矩阵的平方根 · 查看更多 »

矩阵环

矩阵环就是考慮矩阵在環R下經由矩阵加法和矩阵乘法形成的环,從環R中的元素組成的n×n 方阵形成的矩陣環記作Mn(R),某些无限阶矩阵也可以組成无限矩阵环,任何矩阵环的子环也都是矩陣环。如 R​​是一个交换环,则矩阵环Mn(R)是一个结合代数,被称为矩阵代数。在这种情况下,如果 M是一个矩阵, r∈ R,那么矩阵Mr也是矩阵,其矩陣元為M的矩陣元乘r。 這篇文章假设R是可結合環且单位1≠0(单位1.

新!!: 矩阵和矩阵环 · 查看更多 »

矩阵指数

矩阵指数是方块矩阵的一种矩阵函数,与指数函数类似。矩阵指数给出了矩阵李代数与对应的李群之间的关系。 设X为n×n的实数或复数矩阵。X的指数,用eX或exp(X)来表示,是由以下幂级数所给出的n×n矩阵: 以上的级数总是收敛的,因此X的指数是定义良好的。注意,如果X是1×1的矩阵,则X的矩阵指数就是由X的元素的指数所组成的1×1矩阵。.

新!!: 矩阵和矩阵指数 · 查看更多 »

矩陣力學

矩陣力學是量子力學其中一種的表述形式,它是由海森堡、玻恩和约尔当(P.

新!!: 矩阵和矩陣力學 · 查看更多 »

矩陣理論

在數學,矩陣理論是一門研究矩陣在數學上的應用的科目。矩陣理論本來是線性代數的一個小分支,但其後由於陸續在圖論、代數、組合數學和統計上得到應用,漸漸發展成為一門獨立的學科。 有關矩陣理論所用到的名詞的定義,請參考矩陣理論專有名詞表。.

新!!: 矩阵和矩陣理論 · 查看更多 »

矩陣範數

矩陣範數(matrix norm)是數學中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。 矩阵范数却不存在公认唯一的度量方式。.

新!!: 矩阵和矩陣範數 · 查看更多 »

环 (代数)

环(Ring)是由集合R和定义于其上的两种二元运算(记作+和·,常被简称为加法和乘法,但与一般所说的加法和乘法不同)所构成的,符合一些性质(具体见下)的代数结构。 环的定義类似于交换群,只不过在原来「+」的基础上又增添另一种运算「·」(注意我们这里所说的 + 與 · 一般不是我们所熟知的四则运算加法和乘法)。在抽象代数中,研究环的分支为环论。.

新!!: 矩阵和环 (代数) · 查看更多 »

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

新!!: 矩阵和秩 (线性代数) · 查看更多 »

秩-零化度定理

秩-零化度定理是线性代数中的一个定理,给出了一个线性变换或一个矩阵的秩和它的零化度之间的关系。对一个元素在域\mathrm中的m \cdot n矩阵\mathrm,秩-零化度定理说明,它的秩(rank A)和零化度(nullity A)之和等于n: 同样的,对于一个从F-线性空间\mathrm射到\mathrm-线性空间\mathrm的线性变换 \mathrm \;: \; \; \mathrm \rightarrow \mathrm , \mathrm的秩是它的象的维度,\mathrm的零化度是它的核(零空间)的维度。我们有: 实际上定理在更广的范围内也成立,因为\mathrm和\mathrm可以是无限维的。.

新!!: 矩阵和秩-零化度定理 · 查看更多 »

稀疏矩阵

在数值分析中,稀疏矩阵(Sparse matrix),是其元素大部分为零的矩阵。反之,如果大部分元素都非零,则这个矩阵是稠密的。在科学与工程领域中求解线性模型时经常出现大型的稀疏矩阵。 在使用计算机存储和操作稀疏矩阵时,经常需要修改标准算法以利用矩阵的稀疏结构。由于其自身的稀疏特性,通过压缩可以大大节省稀疏矩阵的内存代价。更为重要的是,由于过大的尺寸,标准的算法经常无法操作这些稀疏矩阵。.

新!!: 矩阵和稀疏矩阵 · 查看更多 »

符号

在一种认知体系中,符号是指代一定意义的意象,可以是图形图像、文字组合,也可以是声音信号、建筑造型,甚至可以是一种思想文化、一个时事人物。例如“.

新!!: 矩阵和符号 · 查看更多 »

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

新!!: 矩阵和算法 · 查看更多 »

節點分析

在電路分析裏,節點分析(nodal analysis)是一種用電路的節點電壓來分析電路的一種方法。 節點分析與網目分析是分析電路所使用的兩種主要方法。克希荷夫電流定律與克希荷夫電壓定律分別是節點分析與網目分析的基礎理論。根據克希荷夫電流定律,節點分析會對於每一節點給出一個方程式,要求所有進入某節點的支路電流的總和等於所有離開這節點的支路電流的總和,而支路電流則表示為節點電壓的線性函數。注意到每一條支路的本構關係(constitutive relation)必須給出支路電流與節點電壓之間的線性函數關係,稱為「導納表現」。假設每一條支路的本構關係都有導納表現,則可以做節點分析。例如,對於電阻為 R 、電導為 G.

新!!: 矩阵和節點分析 · 查看更多 »

粒子加速器

粒子加速器(particle accelerator)是利用電場來推動帶電粒子使之獲得高能量。日常生活中常見的粒子加速器有用於電視的陰極射線管及X光管等設施。只有当被加速的粒子置於抽真空的管中时,才不會被空氣中的分子所撞擊而潰散。在高能加速器裡的粒子由四極磁鐵(quadrupole magnet)聚焦成束,使粒子不會因為彼此間產生的排斥力而散開。 粒子加速器有兩種基本型式,環形加速器和直線加速器。.

新!!: 矩阵和粒子加速器 · 查看更多 »

系数

在数学中,系数是在某个表达式中作为某个对象的乘法因数的常数。比如说,9x2中的系数是9。 拥有系数的对象可以各种各样,比如说变量、函数、向量或者矩阵。有的时候系数似乎没有对象,比如说堅尼係數,实际上是因为对应的对象过于生僻而没有列出。在某些情况下,系数会被标上上标或下标,以示区分,如下式中: 为了与xn协调,an 是一个带有下标的系数,n.

新!!: 矩阵和系数 · 查看更多 »

索引典

索引典(英语:thesaurus),也稱為叙词表或類語辭典,同義詞辭典,是主題分析的一種實作方法。所謂主題分析是指辨識某作品之知識內涵,分析其特性,並使用某些文字、代號描述其主題。主題分析可分為「系統主題法」與「字順主題法」,前者即一般所稱之分類法,用邏輯方式建立學科體系的分類表,將作品依照主題給予分類號,常見的分類法有「杜威十進位圖書分類法」、「美國國會圖書館分類法」、「中國圖書館分類法」、「中文圖書分類法」等;後者則是用詞彙來描述作品的主題,即索引人員會先建立控制詞彙,讓使用者透過這些詞彙來查詢相關的作品,常見的作法有「標題法」、以及在此要介紹的「索引典」。 索引典的英文是「Thesaurus」,是在16世紀新創的新拉丁語中的一字,由古希臘語有金庫意思的thesuros演變為拉丁語中的thesaurus,再於新拉丁語被當做金庫的意思來使用。除了金庫的意思之外,它更常被使用來表示一串有著相似、相關或相反意思的單字,即索引典的意思(這個意思最早開始於羅傑索引典)。.

新!!: 矩阵和索引典 · 查看更多 »

線性函數

在數學裏,線性函數(又称一次函数)在不同的領域中有多於一个用途和含意。.

新!!: 矩阵和線性函數 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 矩阵和级数 · 查看更多 »

线性微分方程

线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程: 其中方程左侧的微分算子\mathcal是线性算子,是要解的未知函数,方程的右侧是一个已知函数。如果() 0,那么方程(*)的解的线性组合仍然是解,所有的解构成一个向量空间,称为解空间。这样的方程称为齐次线性微分方程。当不是零函数时,所有的解构成一个仿射空间,由对应的齐次方程的解空间加上一个特解得到。这样的方程称为非齐次线性微分方程。线性微分方程可以是常微分方程,也可以是偏微分方程。.

新!!: 矩阵和线性微分方程 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 矩阵和线性映射 · 查看更多 »

线性方程组

线性方程组是数学方程组的一种,它符合以下的形式: 其中的a_, \, a_以及b_, \, b_等等是已知的常数,而x_, \, x_等等则是要求的未知数。 如果用线性代数中的概念来表达,则线性方程组可以写成: 這裡的A是m×n 矩陣,x是含有n个元素列向量,b是含有m 个元素列向量。 A.

新!!: 矩阵和线性方程组 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

新!!: 矩阵和统计学 · 查看更多 »

经济学

經濟學是一門对产品和服务的生产、分配以及消费进行研究的社會科學。西方语言中的“经济学”一词源於古希臘的Marshall, Alfred, and Mary Paley Marshall (1879).

新!!: 矩阵和经济学 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 矩阵和绝对值 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

新!!: 矩阵和结合律 · 查看更多 »

编码理论

编码理论(Coding theory)是研究编码的性质以及它们在具体应用中的性能的理论。编码用于数据压缩、加密、,最近也用于网络编码中。不同学科(如信息论、電機工程學、数学以及计算机科学)都研究编码是为了设计出高效、可靠的数据传输方法。这通常需要去除冗余并校正(或检测)数据传输中的错误。 编码共分四类:.

新!!: 矩阵和编码理论 · 查看更多 »

置换群

数学上,一个置换群是一个群 G ,其元素是一个给定集 M 的置换,而其群作用是 G 中的置换(可以看作是从M到自身的双射)的复合;其关系经常写作 (G,M) 。注意所有置换的群是对称群;置换群通常是指对称群的一个子群。 n 个元素的置换群记为 S_n ;若 M 是任意有限或无限集合,则所有 M 的置换组成的对称群通常写作 \text(M) 。 置换群到被置换的元素的应用称为群作用;它在对称性和组合论以及数学的其他很多分支中有应用。.

新!!: 矩阵和置换群 · 查看更多 »

罗特汉方程

Roothaan方程是Hartree-Fock分子轨道模型的扩展,有时也称为Hartree-Fock-Roothaan方程或简称HFR方程。与它的原型HF方程不同,HFR方程中,会将分子轨道展开成一组基函数的线性组和,这组基函数可以是原子轨道,也可以是以原子为中心的数学函数,如Slater函数,Gauss函数等。以这组基函数来求解HF方程,就可以得到Roothaan方程。Roothaan方程为HF方法在分子体系中的应用提供了一条道路。 设分子轨道可以展开为\phi_k(\boldsymbol_1).

新!!: 矩阵和罗特汉方程 · 查看更多 »

美國數學學會

美國數學學會(American Mathematical Society,缩写作 AMS)是美國進行數學研究和教育的組織,有不少出版品。前往英國時,受到倫敦數學學會的啟發而於1888年成立AMS。 AMS以TeX為基礎發展了。 AMS出版《數學評論》(Mathematical Reviews),這是數學出版品的評論資料庫。.

新!!: 矩阵和美國數學學會 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 矩阵和群 · 查看更多 »

群表示論

在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。.

新!!: 矩阵和群表示論 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

新!!: 矩阵和点积 · 查看更多 »

电子学

电子学(Electronics),作用于包括有源电子元器件(例如真空管、二极管、三极管、集成电路)和与之相关的无源器件电路的互连技术。有源器件的非线性特性和控制电子流动的能力能够放大微弱信号,并且电子学广泛应用于信息处理、通信和信号处理。电子器件的开关特性使处理数字信号成为可能。电路板、电子封装等互连技术和其他各种形式的通信基础元件完善了电路功能,并使连接在一起的元件成为一个正常工作的系统。 电子学有别于電機(Electrical)和機電(Electro-mechanical)科学与技术,电气和电机科学与技术是处理电能的产生、分布、开关、储存和转换,通过电线、电动机、发电机、电池、开关、中继器、变压器、电阻和其他无源器件从其他形式的能量转换为电能。 1897年,約瑟夫·湯姆森發現電子的存在,这是電子學的起源。早期的電子學使用真空管來控制電子的流動,但其存在成本高及體積大等缺點。现如今,大多數电子设备都使用半导体器件来控制电子。真空管至今仍有一些特殊应用,例如、阴极射线管、专业音频设备和像多腔磁控管等微波设备。 半导体器件的研究和相关技术是固体物理学的一个分支,但是电子电路的设计和搭建来解决实际问题却是电子工程的范围。本文专注于电子学的工程方面。.

新!!: 矩阵和电子学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 矩阵和物理学 · 查看更多 »

特征向量

#重定向 特征值和特征向量.

新!!: 矩阵和特征向量 · 查看更多 »

特征分解

线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。.

新!!: 矩阵和特征分解 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 矩阵和特征值和特征向量 · 查看更多 »

特徵多項式

在線性代數中,對一個線性自同態(取定基即等價於方陣)可定義其特徵多項式,此多項式包含該自同態的一些重要性質,例如行列式、跡數及特徵值。.

新!!: 矩阵和特徵多項式 · 查看更多 »

特殊酉群

在数学中,n 阶特殊酉群(special unitary group),记作 SU(n),是行列式为1 的 n×n -zh-hans:酉矩阵;zh-hant:么正矩阵-组成的群(一般酉矩阵的行列式是绝对值为1的复数)。群运算是矩阵乘法。特殊酉群是由 n×n 酉矩阵组成的酉群 U(n) 的一个子群,酉群又是一般线性群 GL(n, C) 的一个子群。 群 SU(n) 在粒子物理中标准模型中有广泛的应用,特别是 SU(2) 在电弱相互作用与 SU(3) 在量子色动力学中。 最简单的情形 SU(1),是平凡群,只有一个元素。群 SU(2) 同构于範數为 1 的四元数,从而微分同胚于三维球面。因为单位四元数可表示三维空间中的旋转(差一个符号),我们有一个满同态从 SU(2) 到旋转群 SO(3),其核为 \。.

新!!: 矩阵和特殊酉群 · 查看更多 »

相似

#重定向 相似 (幾何).

新!!: 矩阵和相似 · 查看更多 »

盖尔曼矩阵

尔曼矩阵,以物理學家默里·蓋爾曼命名,為SU(3)群無窮小生成元的一種表象。此群的李代數維度為8,因此有8組線性獨立的生成元,可寫為g_i,i值從1到8。.

新!!: 矩阵和盖尔曼矩阵 · 查看更多 »

随机矩阵

#重定向 轉移矩陣.

新!!: 矩阵和随机矩阵 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 矩阵和行列式 · 查看更多 »

规范群

#重定向 规范场论.

新!!: 矩阵和规范群 · 查看更多 »

马尔可夫链

尔可夫链(Markov chain),又稱離散時間馬可夫鏈(discrete-time Markov chain,縮寫為DTMC),因俄國數學家安德烈·马尔可夫(Андрей Андреевич Марков)得名,为狀態空間中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作馬可夫性質。马尔科夫链作为实际过程的统计模型具有许多应用。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。.

新!!: 矩阵和马尔可夫链 · 查看更多 »

詹姆斯·約瑟夫·西爾維斯特

詹姆斯·約瑟夫·西爾維斯特(James Joseph Sylvester,),英国数学家和律师。.

新!!: 矩阵和詹姆斯·約瑟夫·西爾維斯特 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

新!!: 矩阵和计算机科学 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

新!!: 矩阵和谱定理 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 矩阵和质量 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

新!!: 矩阵和费米子 · 查看更多 »

距离矩阵

在数学中, 一个距离矩阵是一个包含一组点两两之间距离的矩阵(即 二维数组)。因此给定N个欧几里得空间中的点,其距离矩阵就是一个非负实数作为元素的N×N的对称矩阵。这些点两两之间点对的数量,N×(N-1)/2,也就是距离矩阵中独立元素的数量。距离矩阵和邻接矩阵概念相似,其区别在于后者仅包含元素(点)之间是否互相连通,并没有包含元素(点)之间的连通的成本或者距离。因此,距离矩阵可以看成是邻接矩阵的加权形式。 举例来说,我们分析如下二维点a至f。在这里,我们把点所在像素之间的欧几里得度量作为距离度量。 其距离矩阵为: 距离矩阵的这些数据可以进一步被看成是图形表示的热度图(如下图所示),其中黑色代表距离为零,白色代表最大距离。 在生物信息学中,距离矩阵用来表示与坐标系无关的蛋白质结构,还有序列空间中两个序列之间的距离。这些表示被用在结构比对,序列比对,还有在核磁共振,X射线和结晶学中确定蛋白质结构。 有时候距离矩阵也被称作相似性矩阵。.

新!!: 矩阵和距离矩阵 · 查看更多 »

在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.

新!!: 矩阵和跡 · 查看更多 »

运动方程

运动方程是刻划系统运动的物理参量所满足的方程或方程组。它们以这些参量对于时间的微分方程形式出现。.

新!!: 矩阵和运动方程 · 查看更多 »

迭代

迭代是重复反馈过程的活动,其目的通常是为了接近并到达所需的目标或结果。每一次对过程的重复被称为一次“迭代”,而每一次迭代得到的结果会被用来作为下一次迭代的初始值。.

新!!: 矩阵和迭代 · 查看更多 »

近軸近似

近軸近似是幾何光學中的高斯光學及用的,可以用在光學系統(例如透镜)的分析 近軸光線是指光線和光轴角度很小,而光線接近光學系統的軸。 在近軸近似及近軸光線下,在計算光的路徑時,可以使用以下的近似(θ為弧度) \sin \theta \approx \theta,\quad \tan \theta \approx \theta \quad \text\quad\cos \theta \approx 1.

新!!: 矩阵和近軸近似 · 查看更多 »

舒尔分解

在线性代数中,舒尔分解或舒尔上三角化是一种矩阵分解方法,得名于德国数学家。.

新!!: 矩阵和舒尔分解 · 查看更多 »

阶梯形矩阵

线性代数中,一個矩阵如果符合下列條件的話,我們稱之為--阶梯形矩阵(Row Echelon Form):.

新!!: 矩阵和阶梯形矩阵 · 查看更多 »

阻抗

阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗是一个复数,实部称为电阻,虚部称为电抗;其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,容抗和感抗合称为电抗。阻抗將電阻的概念加以延伸至交流電路領域,不僅描述電壓與電流的相對振幅,也描述其相對相位。當通過電路的電流是直流電時,電阻與阻抗相等,電阻可以視為相位為零的阻抗。阻抗的概念不仅存在与电路中,在力学的振动系统中也有涉及。 阻抗通常以符號 Z 標記。阻抗是複數,可以用相量 Z_m \angle \theta 或 Z_m e^ 來表示;其中,Z_m是阻抗的大小,\theta 是阻抗的相位。這種表式法稱為「相量表示法」。 具體而言,阻抗定義為電壓與電流的頻域比率。阻抗的大小 Z_m 是電壓振幅與電流振幅的絕對值比率,阻抗的相位 \theta 是電壓與電流的相位差。採用國際單位制,阻抗的單位是歐姆(Ω),與電阻的單位相同。阻抗的倒數是導納,即電流與電壓的頻域比率。導納的單位是西門子 (單位)(舊單位是姆歐)。 英文術語「impedance」是由物理學者奧利弗·黑維塞於1886年發表論文《電工》給出。於1893年,電機工程師亞瑟·肯乃利(Arthur Kennelly)最先以複數表示阻抗。.

新!!: 矩阵和阻抗 · 查看更多 »

阿瑟·凱萊

阿瑟·凱萊(Arthur Cayley,英語發音,),英國數學家。.

新!!: 矩阵和阿瑟·凱萊 · 查看更多 »

邻接矩阵

邻接矩阵是表示一个图的常用存储表示。它用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。 距離矩陣可算是鄰接矩陣的擴充。.

新!!: 矩阵和邻接矩阵 · 查看更多 »

错切

在数学中,错切(transvection,或 shear mapping)是特殊类型的线性变换。臺灣翻譯為推移。.

新!!: 矩阵和错切 · 查看更多 »

重叠矩阵

重叠矩阵是量子化学中用于描述量子力学系统中的基底向量的集合的矩阵。尤其是对于正交基底,重叠矩阵是对角线的。此外,如果基底向量形成了正交的集合,重叠矩阵就是单位矩阵。重叠矩阵总是n×n,其中n是基底函数的数目。这是一个格拉姆矩阵。 总体上,重叠矩阵是这样定义的: 其中 特别的是,如果集合是标准的(不一定正交),对角线上的元素恒为1,而非对角元素的大小总小于或等于这个值。只有存在类似于柯西不等式的线性相关关系时才会取得等号。此外,这个矩阵的定义是恒正的,也就是它的特征值严格为正。.

新!!: 矩阵和重叠矩阵 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 矩阵和量子力学 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 矩阵和量子场论 · 查看更多 »

量子色動力學

量子色动力学(Quantum Chromodynamics,简称QCD)是一个描述夸克胶子之间强相互作用的标准动力学理论,它是粒子物理标准模型的一个基本组成部分。夸克是构成重子(质子、中子等)以及介子(、等)的基本单元,而胶子则传递夸克之间的相互作用,使它们相互结合,形成各种核子和介子,或者使它们相互分离,发生衰变等。多年来量子色动力学已经收集了庞大的实验证据。 量子色动力学是规范场论的一个成功运用,它所对应的规范群是非阿贝尔的SU(3)群,群量子数被称为“颜色”或者“色荷”。每一种夸克有三种颜色,对应着SU(3)群的基本表示。胶子是作用力的传播者,有八种,对应着SU(3)群的伴随表示。这个理论的动力学完全由它的SU(3)规范对称群决定。 量子色动力学享有2种特有的属性:.

新!!: 矩阵和量子色動力學 · 查看更多 »

自由模

在抽象代數中,一個環 R 上的自由模是帶有基底的模。.

新!!: 矩阵和自由模 · 查看更多 »

镜面反射 (数学)

设α为n维欧氏空间V上的单位向量,称线性变换Sα.

新!!: 矩阵和镜面反射 (数学) · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

新!!: 矩阵和酉矩阵 · 查看更多 »

若尔当标准型

在线性代数中,若尔当标准型(英語:Jordan normal form)或称若尔当正规型(英語:Jordan canonical form)是某個線性映射在有限維向量空間上的特別的矩陣表達形式,稱作若尔当矩陣(Jordan matrix),這矩陣接近对角矩阵:除了主对角线和主对角线上方元素之外,其餘都是零且主對角線上方的對角線的係數若不為零--能為1,且這1左方和下方的係數(都在主對角線上)有相同的值。谱定理和正规矩阵都是若尔当标准型的特殊情况,因為可以被對角化(diagonalizable)。若尔当矩阵理论说明了任何一个系数域为\mathbb的方块矩阵M如果特征值都在\mathbb中,那么必然和某个若尔当标准型相似。或者说,如果一个有限維向量空間上的自同态線性映射的特征值都在系数域\mathbb中,那么它可以在某个基底下表示成若尔当标准型。 若尔当标准型得名于十九世纪后期的法国数学家卡米尔·若尔当。.

新!!: 矩阵和若尔当标准型 · 查看更多 »

零空间

在数学中,一个算子 A 的零空间是方程 Av.

新!!: 矩阵和零空间 · 查看更多 »

零維空間

數學上,一個零維空間是按以下的不等價定義之一,維數為零的拓撲空間:.

新!!: 矩阵和零維空間 · 查看更多 »

電路學

電路學(Circuitry),以克希荷夫定律(Kirchhoff's rules)為基礎,探討電子元件之「電壓」與「電流」關係;或是探討放大,雜音的關係。工程師利用電子元件來設計「電子電路」,並產生電路圖來表現,以實現所需的功能。.

新!!: 矩阵和電路學 · 查看更多 »

集合 (数学)

集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

新!!: 矩阵和集合 (数学) · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 矩阵和雅可比矩阵 · 查看更多 »

透镜

本条目介绍的是光學設備,其他領域的透鏡不在此處討論。 透鏡是一種將光線聚合或分散的設備,通常是由一片玻璃構成,但用於其他電磁輻射的類似設備通常也稱為透鏡,例如:由石蠟製成的微波透鏡,用玻璃、树脂或水晶等透明材料制成的放大镜、眼镜等,也都是透镜。 透镜有两类,中间厚边缘薄的叫凸透镜,中间薄边缘厚的叫凹透镜,比球面半径小许多的透镜叫薄透镜,薄透镜的几何中心叫透镜的鏡心。 透镜并不一定是固定形状,使用满足要求的材料来制作可以改变形状的透镜可以提高清晰度,景深,不过通过使用镜头组也能达到相同的效果,就如澳大利亚摄影师吉姆·弗雷泽(Jim Frazier)做的那样,这样做是等效的。如果你有适合形状的壳来封存洁净的可增减的水,那就能做到。.

新!!: 矩阵和透镜 · 查看更多 »

逆矩阵

逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.

新!!: 矩阵和逆矩阵 · 查看更多 »

LU分解

在线性代数中,LU分解是矩阵分解的一种,可以将一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩陣或计算行列式。.

新!!: 矩阵和LU分解 · 查看更多 »

TF-IDF

#重定向 Tf-idf.

新!!: 矩阵和TF-IDF · 查看更多 »

极限 (序列)

#重定向 極限 (數列).

新!!: 矩阵和极限 (序列) · 查看更多 »

控制论

控制论是一门跨学科研究, 它用于研究控制系统的结构,局限和发展。在21世纪,控制论的定义变得更加宽泛,主要用于指代“对任何使用科学技术的系统的控制”。由于这一定义过于宽泛,许多相关人士不再使用“控制论”一词。 控制论与对系统的研究有关,如自动化系统、物理系统、生物系统、认知系统、以及社会系统等等。控制论可被应用于研究包含信令回路的系统。信令回路在这里指,当一个系统的运作改变了它所在的环境,而这些改变又反过来反馈于系统上,并导致系统本身的变化。这种循环最初被称为“循环影响”关系。.

新!!: 矩阵和控制论 · 查看更多 »

描述统计学

描述統計,又稱敘述統計,是统计学中,來描绘或总结观察量的基本情况的統計总称。其与推论统计相对应。.

新!!: 矩阵和描述统计学 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

新!!: 矩阵和模 · 查看更多 »

歐萊禮

歐萊禮媒體(-- Media)是以出版電腦資訊書籍闻名于世的美国公司,由提姆·歐萊禮(Tim --)創立於1978年。該公司既是出版開放原始碼書籍的先驅之一,也常承辦許多開放源始碼社群的研討會議。出版图书的选题范围现在也擴大到数学、心理学、旅游、日常生活和职业发展等。.

新!!: 矩阵和歐萊禮 · 查看更多 »

正交矩阵

在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

新!!: 矩阵和正交矩阵 · 查看更多 »

正交群

数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.

新!!: 矩阵和正交群 · 查看更多 »

正态分布

常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.

新!!: 矩阵和正态分布 · 查看更多 »

江泽涵

江泽涵(),安徽旌德人,数学家,数学教育家,中国科学院院士,中国拓扑学研究的奠基人之一。.

新!!: 矩阵和江泽涵 · 查看更多 »

泡利矩陣

在數學和數學物理中,包立矩陣是一組三個2×2的么正厄米複矩陣,一般都以希臘字母σ來表示,但有時當他們在和同位旋的對稱性做連結時,會被寫成τ。他們在包立表像(σz表像)可以寫成: \end 這些矩陣是以物理學家沃爾夫岡·包立命名的。在量子力學中,它們出現在包立方程式中描述磁場和自旋之間交互作用的一項。所有的包立矩陣都是厄米矩陣,它們和單位矩陣(有時候又被稱為為第零號包立矩陣),的線性張成為2×2厄米矩陣的向量空間。 從量子力學的角度來看,哈密頓矩陣(算符)代表可觀測的物理量,因此,σk, k.

新!!: 矩阵和泡利矩陣 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 矩阵和波粒二象性 · 查看更多 »

泰勒级数

在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.

新!!: 矩阵和泰勒级数 · 查看更多 »

洛伦兹群

#重定向 勞侖茲群.

新!!: 矩阵和洛伦兹群 · 查看更多 »

挤压

#重定向 擠型.

新!!: 矩阵和挤压 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 矩阵和有限域 · 查看更多 »

有限元分析

有限元分析,即有限元方法(冯康首次发现时称为基于变分原理的差分方法),是一种用于求解微分方程组或积分方程组数值解的数值技术。这一解法基于完全消除微分方程,即将微分方程转化为代数方程组(稳定情形);或将偏微分方程(组)改写为常微分方程(组)的逼近,这样可以用标准的数值技术(例如欧拉法,龙格-库塔法等)求解。 在解偏微分方程的过程中,主要的难点是如何构造一个方程来逼近原本研究的方程,并且该过程还需要保持数值稳定性。目前有许多处理的方法,他们各有利弊。当区域改变时(就像一个边界可变的固体),当需要的精确度在整个区域上变化,或者当解缺少光滑性时,有限元方法是在复杂区域(像汽车、船体结构、输油管道)上解偏微分方程的一个很好的选择。例如,在正面碰撞仿真时,有可能在"重要"区域(例如汽车的前部)增加预先设定的精确度并在车辆的末尾减少精度(如此可以减少仿真所需消耗);另一个例子是模拟地球的气候模式,预先设定陆地部分的精确度高于广阔海洋部分的精确度是非常重要的。.

新!!: 矩阵和有限元分析 · 查看更多 »

有限群

在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.

新!!: 矩阵和有限群 · 查看更多 »

最小二乘法

最小二乘法(又称--)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 “最小平方法”是對過度確定系統,即其中存在比未知數更多的方程組,以迴歸分析求得近似解的標準方法。在這整個解決方案中,最小平方法演算為每一方程式的結果中,將殘差平方和的總和最小化。 最重要的應用是在曲線擬合上。最小平方所涵義的最佳擬合,即殘差(殘差為:觀測值與模型提供的擬合值之間的差距)平方總和的最小化。當問題在自變量(x變量)有重大不確定性時,那麼使用簡易迴歸和最小平方法會發生問題;在這種情況下,須另外考慮變量-誤差-擬合模型所需的方法,而不是最小平方法。 最小平方問題分為兩種:線性或普通的最小平方法,和非線性的最小平方法,取決於在所有未知數中的殘差是否為線性。線性的最小平方問題發生在統計迴歸分析中;它有一個封閉形式的解決方案。非線性的問題通常經由迭代細緻化來解決;在每次迭代中,系統由線性近似,因此在這兩種情況下核心演算是相同的。 最小平方法所得出的多項式,即以擬合曲線的函數來描述自變量與預計應變量的變異數關係。 當觀測值來自指數族且滿足輕度條件時,最小平方估計和最大似然估计是相同的。最小平方法也能從動差法得出。 以下討論大多是以線性函數形式來表示,但對於更廣泛的函數族,最小平方法也是有效和實用的。此外,迭代地將局部的二次近似應用於或然性(藉由費雪信息),最小平方法可用於擬合廣義線性模型。 其它依據平方距離的目標加總函數作為逼近函數的主題,請參見最小平方法(函數近似)。 最小平方法通常歸功於高斯(Carl Friedrich Gauss,1795),但最小平方法是由阿德里安-马里·勒让德(Adrien-Marie Legendre)首先發表的。.

新!!: 矩阵和最小二乘法 · 查看更多 »

明尼苏达大学

明尼苏达大学双城分校(University of Minnesota, Twin Cities),是位于美国明尼苏达州雙城區(即明尼阿波利斯及圣保罗)的一所公立大学,為明尼蘇達大學系統歷史最悠久,規模最大的分校,常被直接稱為明尼苏达大学。它是美国最著名的公立研究型大学之一,也是世界一流的學術研究機構,在2011年上海交通大學世界大學學術排名評比為全球第28名,學校亦有公立常春藤之稱。 明尼蘇達大學是美國知名的十大聯盟的成員大學之一,亦是美国最具综合性的高等学府之一,位居最富盛名的大学之列,具有优秀的教育和服务社会的传统。 学校包括明尼阿波利斯校园和圣保罗校园,又称东校园和西校园,其中明尼阿波利斯校园位于密西西比河东西两岸。双城分校风景秀丽,建筑风格各异,是美国大学中传统的十大美丽校园之一。明尼苏达大学双城分校一直排名在公立大学的前20位。双城分校共有161个学士专业、218个硕士专业、114个博士专业,并可以授予5个专业学位。其理工学院一直在全美排在前20位,化工更是位列三甲。这里有很好的公共卫生学院、医学院、管理学院、和农学院等。 双城分校不仅提供良好的教学和科研,她也是一个文化和艺术中心。建有最好的美术馆和博物馆。在这里可以享受最好的音乐與戏剧,许多世界名人及政治家曾到这里公开演讲。双城也是商业和工业中心,特别在计算机技术、医疗器械以及其它高新技术的设计、开发和制造方面。明尼苏达州也被成为“医疗器械的硅谷”,拥有世界上最好的医疗中心之一。 明尼苏达大学由19所學院校和主要學術單位组成,分别是專職醫療中心、生物科学学院、進修教育学院、牙医学院、設計学院、教育和人類发展学院、推廣合作部、食品、农业与自然資源科学学院、研究生學院、法学院、博雅教育学院、卡尔森管理学院、医学院、护理学院、药学院、休伯特·漢弗萊公共事务研究所、公共卫生学院、理工学院和兽医学院。.

新!!: 矩阵和明尼苏达大学 · 查看更多 »

海森矩阵

在数学中,海森矩阵(Hessian matrix 或 Hessian)是一个多变量实值函数的二阶偏导数组成的方块矩阵,假設有一實數函数 \textstyle f(x_1, x_2, \dots, x_n), 如果 f 所有的二阶偏导数都存在,那么 f 的海森矩阵的第 ij-項即: 其中x.

新!!: 矩阵和海森矩阵 · 查看更多 »

方块矩阵

方塊矩陣,或简称方阵,是行數及列數皆相同的矩陣。由n \times n\,矩陣組成的集合,連同矩陣加法和矩陣乘法,构成環。除了n.

新!!: 矩阵和方块矩阵 · 查看更多 »

方程组

方程组(--)又稱--(--),是两个或两个以上含有多个未知数的方程联立得到的集。未知数的值称为方程组的根,求方程组根的过程称为解方程组。一般在方程式的左边加大括号标注。.

新!!: 矩阵和方程组 · 查看更多 »

斜率

斜率用來量度斜坡的斜度。數學上,直線的斜率在任一處皆相等,是直線傾斜程度的量度。透過代數和幾何能計算出直線的斜率;曲線上某點的切線斜率反映此曲線的變數在此點的變化快慢程度,用微積分可計算出曲線中任一點的切線斜率,直线斜率的概念等同土木工程/地理的坡度。.

新!!: 矩阵和斜率 · 查看更多 »

文本挖掘

文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程(通常进行分析,同时加上一些衍生语言特征以及消除杂音,随后插入到数据库中) ,产生结构化数据,并最终评价和解释输出。'高品质'的文本挖掘通常是指某种组合的相关性,新颖性和趣味性。典型的文本挖掘方法包括文本分类,文本聚类,概念/实体挖掘,生产精确分类,观点分析,文档摘要和实体关系模型(即,学习已命名实体之间的关系) 。 文本分析包括了信息检索、词典分析来研究词语的频数分布、模式识别、标签\注释、信息抽取,数据挖掘技术包括链接和关联分析、可视化和预测分析。本质上,首要的任务是,通过自然语言处理(NLP)和分析方法,将文本转化为数据进行分析。.

新!!: 矩阵和文本挖掘 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

新!!: 矩阵和旋转 · 查看更多 »

旋量

在數學幾何學與物理中,旋量是複向量空間中的的元素。旋量乃自旋群的表象,類似於歐幾里得空間中的向量以及更廣義的張量,當歐幾里得空間進行無限小旋轉時,旋量做相應的線性轉換。當如此一系列這樣的小旋轉組合成一定量的旋轉時,這些旋量轉換的次序會造成不同的組合旋轉結果,與向量或張量的情形不同。當空間從0°開始,旋轉了完整的一圈(360°),旋量發生了正負號變號(見圖),這個特徵即是旋量最大的特點。在一給定維度下,需要旋量才能完整地描述旋轉,如此引入了額外數量的維度。 在閔考斯基空間的情形,也可以定義出相似的旋量,其中狹義相對論的勞侖茲轉換扮演旋轉的角色。旋量最先是由埃利·嘉當於1913年引入幾何學。Quote from Elie Cartan: The Theory of Spinors, Hermann, Paris, 1966, first sentence of the Introduction section of the beginning of the book (before the page numbers start): "Spinors were first used under that name, by physicists, in the field of Quantum Mechanics.

新!!: 矩阵和旋量 · 查看更多 »

旋量群

数学中,旋量群 Spin(n) 是特殊正交群 SO(n) 的二重覆叠,使得存在李群的短正合列: 对 n > 2, Spin(n) 单连通,从而是 SO(n) 的万有覆叠空间。作为李群 Spin(n) 及其李代数和特殊正交群 SO(n) 有相同的维数 n(n − 1)/2。 Spin(n) 可以构造为克利福德代数 Cℓ(n) 可逆元群的一个子群。Spin(n) 由所有写成个偶数个单位向量的克利福德乘积的元素生成。对应到 SO(n) 中恰是沿着垂直于这偶数个向量的超平面的反射的复合。.

新!!: 矩阵和旋量群 · 查看更多 »

散射矩阵

散射矩阵,又称S矩阵,是物理学中描述散射过程的一个主要观测量。 现代高能物理的发展,同其他物理学一样是理论和实验的互动,而这种互动主要的桥梁就是散射矩阵。 假设散射源为很好的定域散射源,与被散射粒子的相互作用局限在有限的空间范围内,那么,无穷远时间以前粒子处于一个自由态,称为入态,记为|Ψ>in;无穷远时间之后粒子也是处于一个自由态,称为出态,记为|Ψ>out。 入态到出态,相互作用可以用一个矩阵描述,记为S,那么就有: 这就是散射矩阵的定义。 散射矩阵直接与可观测的物理量相联系,但是我们在量子场论中处理的是场,两者如何联系?或者说如何从量子场论计算散射矩阵?我们还要利用一个,它联系了量子场论中的格林函数和可观测的散射矩阵。这使得理论能够预言实验。 S S S S.

新!!: 矩阵和散射矩阵 · 查看更多 »

數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.

新!!: 矩阵和数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 矩阵和数学 · 查看更多 »

数值分析

数值分析(numerical analysis),是指在数学分析(区别于离散数学)问题中,对使用数值近似(相对于一般化的符号运算)算法的研究。 巴比伦泥板YBC 7289是关于数值分析的最早数学作品之一,它给出了 \sqrt 在六十进制下的一个数值逼近,\sqrt是一個邊長為1的正方形的對角線,在西元前1800年巴比倫人也已在巴比倫泥板上計算勾股數(畢氏三元數)(3, 4, 5),即直角三角形的三邊長比。 数值分析延續了實務上數學計算的傳統。巴比倫人利用巴比伦泥板計算\sqrt的近似值,而不是精確值。在許多實務的問題中,精確值往往無法求得,或是無法用有理數表示(如\sqrt)。数值分析的目的不在求出正確的答案,而是在其誤差在一合理範圍的條件下找到近似解。 在所有工程及科學的領域中都會用到数值分析。像天體力學研究中會用到常微分方程,最優化會用在资产组合管理中,數值線性代數是資料分析中重要的一部份,而隨機微分方程及馬可夫鏈是在醫藥或生物學中生物細胞模擬的基礎。 在電腦發明之前,数值分析主要是依靠大型的函數表及人工的內插法,但在二十世紀中被電腦的計算所取代。不過電腦的內插演算法仍然是数值分析軟體中重要的一部份。.

新!!: 矩阵和数值分析 · 查看更多 »

数值稳定性

在数值分析中,数值稳定性是一种希望得到的数值算法特性。根据算法的不同,稳定性的精确定义也有所不同,但是都与算法的精确性与正确性相关。 理论上有些计算下可以用多种代数上等价的理想实数或者复数算法来实现,但是实际上由于不同的数值稳定性可能会得到不同的结果。数值稳定性的一项任务就是选择健壮即有良好数值稳定性的算法。.

新!!: 矩阵和数值稳定性 · 查看更多 »

数值线性代数

数值线性代数是一门研究在计算机上进行线性代数计算,特别是矩阵运算的算法的学科,是工程学和计算科学问题中的基本部分,这些问题包括图像处理、信号处理、金融工程学、材料科学模拟、结构生物学、数据挖掘、生物信息学、流体动力学和其他很多领域。这类软件多依赖於解决多种数值线性代数问题的先进算法的发展、分析和实现,在很大程度上是依靠矩阵在有限差分法和有限元法中的作用。 数值线性代数中的常见问题包括下列计算问题:LU分解、QR分解、奇异值分解、特征值。.

新!!: 矩阵和数值线性代数 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 矩阵和数论 · 查看更多 »

拉丁字母

拉丁字母(也稱為罗马字母)是多數歐洲語言采用的字母系统,是世界上最通行的字母文字系統。拉丁字母作為羅馬文明的成果之一,隨著征服推廣到西歐廣大地區。.

新!!: 矩阵和拉丁字母 · 查看更多 »

拉普拉斯展开

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。.

新!!: 矩阵和拉普拉斯展开 · 查看更多 »

重定向到这里:

矩阵运算矩陣

传出传入
嘿!我们在Facebook上吧! »