我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

直径和视差

快捷方式: 差异相似杰卡德相似系数参考

直径和视差之间的区别

直径 vs. 视差

在数学尤其是几何学中,直径是圆形的特性之一,是指穿过圆心且其兩端點皆在圓周上的线段或者該線段的長度是最長的,一般用符号d或著Ø表示。 在一般的度量空间(也就是定义了距离的空间,比如说常见的二维平面)上,也可以定义一个集合的直径。在这里直径是这个集合之中两点之间的距离的最小上界:. 視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

之间直径和视差相似

直径和视差有(在联盟百科)2共同点: 几何学

弦可以指:.

弦和直径 · 弦和视差 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

几何学和直径 · 几何学和视差 · 查看更多 »

上面的列表回答下列问题

直径和视差之间的比较

直径有23个关系,而视差有54个。由于它们的共同之处2,杰卡德指数为2.60% = 2 / (23 + 54)。

参考

本文介绍直径和视差之间的关系。要访问该信息提取每篇文章,请访问: