我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

皮尔逊积矩相关系数和線性回歸

快捷方式: 差异相似杰卡德相似系数参考

皮尔逊积矩相关系数和線性回歸之间的区别

皮尔逊积矩相关系数 vs. 線性回歸

在统计学中,皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,又称作 PPMCC或PCCs, 文章中常用r或Pearson's r表示)用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。在自然科学领域中,该系数广泛用于度量两个变量之间的相关程度。它是由卡尔·皮尔逊从弗朗西斯·高尔顿在19世纪80年代提出的一个相似却又稍有不同的想法演变而来。J. 在统计学中,线性回归(Linear regression)是利用称为线性回归方程的最小平方函數对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。) 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。 线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。 线性回归有很多实际用途。分为以下两大类:.

之间皮尔逊积矩相关系数和線性回歸相似

皮尔逊积矩相关系数和線性回歸有(在联盟百科)3共同点: 统计学置信区间標準差

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

皮尔逊积矩相关系数和统计学 · 線性回歸和统计学 · 查看更多 »

置信区间

在统计学中,一个概率样本的置信区间(Confidence interval),是对这个样本的某个总体参数的区间估计。置信区间展现的是,这个总体参数的真实值有一定概率落在與該测量结果有關的某對應區間。置信区间给出的是,聲稱总体参数的真實值在测量值的區間所具有的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平。举例来说,如果在一次大选中某人的支持率为55%,而置信水平0.95上的置信区间是(50%,60%),那么他的真实支持率落在50%和60%之区间的机率為95%,因此他的真实支持率不足50%的可能性小于2.5%(假设分布是对称的)。 如例子中一样,置信水平一般用百分比表示,因此置信水平0.95上的置信区间也可以表达为:95%置信区间。置信区间的两端被称为置信极限。对一个给定情形的估计来说,置信水平越高,所对应的置信区间就会越大。 对置信区间的计算通常要求对估计过程的假设(因此属于参数统计),比如说假设估计的误差是成正态分布的。 置信区间只在频率统计中使用。在中的对应概念是可信区间。但是可信区间和置信区间是建立在不同的概念基础上的,因此一般上说取值不会一样。置信空间表示通过计算估计值所在的区间。置信水平表示准确值落在这个区间的概率。置信区间表示具体值范围,置信水平是个概率值。例如:估计某件事件完成会在10~12日之间,但这个估计准确性大约只有80%:表示置信区间(10,12,置信水平80%。要想提高置信水平,就要放宽信賴區間。.

皮尔逊积矩相关系数和置信区间 · 線性回歸和置信区间 · 查看更多 »

標準差

標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.

標準差和皮尔逊积矩相关系数 · 標準差和線性回歸 · 查看更多 »

上面的列表回答下列问题

皮尔逊积矩相关系数和線性回歸之间的比较

皮尔逊积矩相关系数有21个关系,而線性回歸有27个。由于它们的共同之处3,杰卡德指数为6.25% = 3 / (21 + 27)。

参考

本文介绍皮尔逊积矩相关系数和線性回歸之间的关系。要访问该信息提取每篇文章,请访问: