之间皮尔逊积矩相关系数和線性回歸相似
皮尔逊积矩相关系数和線性回歸有(在联盟百科)3共同点: 统计学,置信区间,標準差。
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
置信区间
在统计学中,一个概率样本的置信区间(Confidence interval),是对这个样本的某个总体参数的区间估计。置信区间展现的是,这个总体参数的真实值有一定概率落在與該测量结果有關的某對應區間。置信区间给出的是,聲稱总体参数的真實值在测量值的區間所具有的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平。举例来说,如果在一次大选中某人的支持率为55%,而置信水平0.95上的置信区间是(50%,60%),那么他的真实支持率落在50%和60%之区间的机率為95%,因此他的真实支持率不足50%的可能性小于2.5%(假设分布是对称的)。 如例子中一样,置信水平一般用百分比表示,因此置信水平0.95上的置信区间也可以表达为:95%置信区间。置信区间的两端被称为置信极限。对一个给定情形的估计来说,置信水平越高,所对应的置信区间就会越大。 对置信区间的计算通常要求对估计过程的假设(因此属于参数统计),比如说假设估计的误差是成正态分布的。 置信区间只在频率统计中使用。在中的对应概念是可信区间。但是可信区间和置信区间是建立在不同的概念基础上的,因此一般上说取值不会一样。置信空间表示通过计算估计值所在的区间。置信水平表示准确值落在这个区间的概率。置信区间表示具体值范围,置信水平是个概率值。例如:估计某件事件完成会在10~12日之间,但这个估计准确性大约只有80%:表示置信区间(10,12,置信水平80%。要想提高置信水平,就要放宽信賴區間。.
標準差
標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.
上面的列表回答下列问题
- 什么皮尔逊积矩相关系数和線性回歸的共同点。
- 什么是皮尔逊积矩相关系数和線性回歸之间的相似性
皮尔逊积矩相关系数和線性回歸之间的比较
皮尔逊积矩相关系数有21个关系,而線性回歸有27个。由于它们的共同之处3,杰卡德指数为6.25% = 3 / (21 + 27)。
参考
本文介绍皮尔逊积矩相关系数和線性回歸之间的关系。要访问该信息提取每篇文章,请访问: