之间畢達哥拉斯質數和素数相似
畢達哥拉斯質數和素数有(在联盟百科)4共同点: 二次互反律,当且仅当,高斯整數,费马平方和定理。
二次互反律
在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
当且仅当和畢達哥拉斯質數 · 当且仅当和素数 ·
高斯整數
斯整數是實數和虛數部分都是整數的複數。所有高斯整數組成了一個整域,寫作\mathbf,是個不可以轉成有序環的歐幾里德域。 高斯整數的范数都是非負整數,定義為 \mathbf單位元1, -1, i, -i的範數均為1。.
畢達哥拉斯質數和高斯整數 · 素数和高斯整數 ·
费马平方和定理
費馬平方和定理是由法国数学家費馬在1640年提出的一个猜想,但他没有提出有力的数学证明,1747年,瑞士数学家萊昂哈德·歐拉提出证明后成为定理。.
上面的列表回答下列问题
- 什么畢達哥拉斯質數和素数的共同点。
- 什么是畢達哥拉斯質數和素数之间的相似性
畢達哥拉斯質數和素数之间的比较
畢達哥拉斯質數有23个关系,而素数有185个。由于它们的共同之处4,杰卡德指数为1.92% = 4 / (23 + 185)。
参考
本文介绍畢達哥拉斯質數和素数之间的关系。要访问该信息提取每篇文章,请访问: