之间电力电子学和電機工程學相似
电力电子学和電機工程學有(在联盟百科)18共同点: 变频器,安培,交流電,伏特,磁控管,继电器,电子学,电磁学,电流,直流電,電力系統,電壓,電子計算機,電機機械,逆變器,控制理论,斩波器,整流器。
变频器
变频器(Variable-frequency Drive,縮寫:VFD),也稱為变频驅動器或驅動控制器,另有一英文名稱Inverter,和逆變器的英文相同。变频器是的一種,是应用變頻驅動技术改变交流馬達工作电壓的频率和幅度,來平滑控制交流馬達速度及轉矩,最常見的是輸入及輸出都是交流電的交流/交流轉換器。 在變頻器出現之前,要調整馬達轉速的應用需透過直流电动机才能完成,不然就是要透過利用內建耦合機的VS馬達,在運轉中用耦合機使馬達的實際轉速下降,變頻器簡化上述的工作,缩小设备体积,大幅度降低维修率。不過變頻器的電源線及馬達線上面有高頻切換的訊號,會造成電磁干擾,而變頻器輸入側的功率因數一般不佳,會產生電源端的諧波。 变频器的應用範圍很廣,從小型家電到大型的礦場研磨機及壓縮機。全球約1/3的能量是消耗在驅動定速離心泵、風扇及壓縮機的馬達上,而變頻器的市场渗透率仍不算高。能源效率的顯著提昇是使用變頻器的主要原因之一。 變頻器技術和電力電子有密切關係,包括半導體切換元件、變頻器拓撲、控制及模擬技術、以及控制硬體及韌體的進步等。 变频器的英文名稱Variable-frequency Drive,是现代科技中少數源自中文者之一,.
安培
安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.
交流電
交流電流(Alternating Current,縮寫:AC)是指大小和方向都發生週期性變化的電流,在一個週期內的運行平均值為零。不同於直流電,後者的方向是不會隨著時間發生改變的,並且直流電沒有周期性變化。 通常波形為正弦曲線。交流電可以有效傳輸電力。但實際上還有應用其他的波形,例如三角形波、正方形波。生活中使用的市電就是具有正弦波形的交流電。.
伏特
伏特(volt)是国际单位制中电压的单位,符号V。 在一根均匀的、宽度和温度恒定的导线上假如有一安培电流流动,那么导线的电阻在一定的距离内將电能转化为热能1瓦(W.
磁控管
#重定向 多腔磁控管.
继电器
继电器(Relay),也稱電驛,是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。.
电子学
电子学(Electronics),作用于包括有源电子元器件(例如真空管、二极管、三极管、集成电路)和与之相关的无源器件电路的互连技术。有源器件的非线性特性和控制电子流动的能力能够放大微弱信号,并且电子学广泛应用于信息处理、通信和信号处理。电子器件的开关特性使处理数字信号成为可能。电路板、电子封装等互连技术和其他各种形式的通信基础元件完善了电路功能,并使连接在一起的元件成为一个正常工作的系统。 电子学有别于電機(Electrical)和機電(Electro-mechanical)科学与技术,电气和电机科学与技术是处理电能的产生、分布、开关、储存和转换,通过电线、电动机、发电机、电池、开关、中继器、变压器、电阻和其他无源器件从其他形式的能量转换为电能。 1897年,約瑟夫·湯姆森發現電子的存在,这是電子學的起源。早期的電子學使用真空管來控制電子的流動,但其存在成本高及體積大等缺點。现如今,大多數电子设备都使用半导体器件来控制电子。真空管至今仍有一些特殊应用,例如、阴极射线管、专业音频设备和像多腔磁控管等微波设备。 半导体器件的研究和相关技术是固体物理学的一个分支,但是电子电路的设计和搭建来解决实际问题却是电子工程的范围。本文专注于电子学的工程方面。.
电磁学
电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.
电流
電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.
直流電
流电流(Direct current),可通过使用称为整流器的电子元件(通常情况下)或机电元件(在历史上),使交流电流只向一个方向流动,将其转化为直流电流。直流电流由成交流电流的逆变器或电动发电机组。 第一个商业化的电力传输由托马斯·爱迪生在十九世纪后期开发,使用110伏特的直流电。然而由于在传输和电压转换的优势差异,今天几乎所有的电力分配為交流电。在20世纪50年代中期,曾經發展過超高壓直流電系統,現在該技術是在遠程及水下電力傳輸上,除了高壓交流電以外的另一種選項然而並不常見。但是特種應用要求上,如一些第三軌或架空電車線的铁路电力系统還是用直流電,交流电被分配到一个变电站利用一个整流器转换为直流电。 而末端應用上卻是直流電的天下,尤其是在技术发展的地带(如加州的硅谷等),目前幾乎所有充電器都使用直流电对电池进行充电,且在几乎所有电子科技系统中作为电源。非常大量的直流电源還用于生产铝和其它电化学过程。直流還用在一些铁路推进,尤其是在城市地区的捷運,並且隨著捷運路線順便建立了一個直接輸出高压直流電的電網,供給有限的沿路工商業應用是常見做法。.
電力系統
電力系統是一個由電力元件組成的網路,用來發電、輸電、用電。舉例來說,電力系統就是提供一個區域家庭用電及工業用電的網路,如果這個區域很大,那麼這個電力系統可以稱之為輸電網路,並且可以區分為三個部份:發電系統,輸電系統,配電系統。.
电力电子学和電力系統 · 電力系統和電機工程學 ·
電壓
電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).
電子計算機
--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.
電機機械
電機機械(Electric machinery),或稱電工機械,是電機工程學裡的一個學科。主要研究發電機與電動機與轉換電力的變壓器。.
电力电子学和電機機械 · 電機工程學和電機機械 ·
逆變器
逆變器(又称變流器、反流器,或稱反用換流器、電壓轉換器;Inverter)是一個利用高频电桥电路將直流電變換成交流電的电子器件,其目的与整流器相反。.
控制理论
控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.
控制理论和电力电子学 · 控制理论和電機工程學 ·
斩波器
斩波器(Chopper),又称斩波电路,是一种转换电能的电力电子电路,根据电能的形式可分为直流斩波器和交流斩波器,其中直流斩波器是最常见的类型。.
整流器
整流器是電源供應器的一部份,可以將交流電轉換成直流電的裝置或元件也被用來作無線電訊號的偵測器等。整流器可以是固態二極體、真空管二極管、汞弧管、或是氧化銅與硒的堆疊等作成。 能把直流電轉換成交流電的裝置則稱為「逆變器」。 整流器一般指能把AC轉成DC的那一組二極體的總稱,但在半波整流只用到一個二極體時,這個二極體也就是整流器。 整流作用有時並不一定是單純用來作為產生直流之用。早期的礦石收音机使用被暱稱為「貓鬚」()的金屬細線壓在方鉛礦(galena,成份是硫化鉛)晶體上,構成點接觸整流器(point-contact rectifier),稱為或晶體檢波器(crystal detector),目的是檢波。在气体(瓦斯)加热系统中,火焰整流(flame rectification)是用于检测火焰的存在:當火焰存在時,火焰外層的兩個金屬電極形成的電流路徑中,電漿會對給予的交流電壓產生整流作用。.
上面的列表回答下列问题
- 什么电力电子学和電機工程學的共同点。
- 什么是电力电子学和電機工程學之间的相似性
电力电子学和電機工程學之间的比较
电力电子学有33个关系,而電機工程學有230个。由于它们的共同之处18,杰卡德指数为6.84% = 18 / (33 + 230)。
参考
本文介绍电力电子学和電機工程學之间的关系。要访问该信息提取每篇文章,请访问: