我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

玻色–爱因斯坦凝聚和費米氣體

快捷方式: 差异相似杰卡德相似系数参考

玻色–爱因斯坦凝聚和費米氣體之间的区别

玻色–爱因斯坦凝聚 vs. 費米氣體

玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工學院的沃夫岡·凱特利與科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK(1.7 K)的低温下首次获得了玻色-爱因斯坦--。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。. 在物理学中,費米氣體(Fermi gas),又稱為自由电子氣體(free electron gas)、费米原子气体,是一个量子统计力学中的理想模型,指的是一群不相互作用的費米子。 費米氣體是理想氣體的量子力學版本。在金屬內的電子、在半導體內的電子或在中子星裏的中子,都可以被視為近似於費米氣體。處於熱力平衡的費米氣體裏,費米子的能量分布,是由它們的數目密度(number density)、溫度、與尚存在能量量子態集合,依照費米-狄拉克統計的方程式而表徵。泡利不相容原理闡明,不允許兩個或兩個以上的費米子佔用同一个量子態。因此,在絕對零度,費米氣體的總能量大於費米子數量與單獨粒子基態能量的乘積,並且,費米氣體的壓力,稱為「簡併壓力」,不等於零。這與經典理想氣體的現象有很明顯的不同。簡併壓力使得中子星或白矮星能夠抵抗萬有引力的壓縮,因而得到穩定平衡,不致向內爆塌。 在低温下,玻色原子气体可以形成玻色-爱因斯坦凝聚(Bose-Einstein condensation, BEC),这是由爱因斯坦在1925年的理论而预言的。费米子由于泡利不相容原理,不能形成BEC。但可通过Feshbach共振,利用磁场调节费米原子间的相互作用,使费米子配对转变成玻色型粒子而形成BEC。 由於前述定義忽略了粒子與粒子之間的相互作用,費米氣體問題約化為研究一群獨立的費米子的物理行為的問題。這問題本身相當容易解析。一些更深奧,更進階,更精密的理論,牽涉到粒子與粒子之間的互相作用的理論(像費米液體理論或相互作用的微擾理論),時常會以費米氣體問題為研究的開端。.

之间玻色–爱因斯坦凝聚和費米氣體相似

玻色–爱因斯坦凝聚和費米氣體有(在联盟百科)5共同点: 玻色氣體绝对零度盒中氣體阿尔伯特·爱因斯坦量子力学

玻色氣體

玻色氣體(Bose gas)是一個經典的理想氣體的量子力學模型。其概念相似於費米氣體。 結合薩特延德拉·玻色和愛因斯坦共同提出的理想的玻色氣體,指的是在足夠低的溫度下〈接近0K〉一群玻色子會形成所謂的固化物。但這樣的行為和古典的理想氣體不同。而固化物的形成即所認知的玻色–愛因斯坦凝聚。.

玻色–爱因斯坦凝聚和玻色氣體 · 玻色氣體和費米氣體 · 查看更多 »

绝对零度

絕對零度(absolute zero)是熱力學的最低溫度,是粒子动能低到量子力学最低点时物质的温度。绝对零度是僅存於理論的下限值,其熱力學溫標寫成K,等於攝氏溫標零下273.15度(即−273.15℃)。 物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分佈,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,根據熱力學第二定律,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。 有關物質接近絕對零度時的行為,可初步觀察。定義如下: 其中h為普朗克常數、m為粒子的質量、k為波茲曼常數、T為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是在1995年首次被實驗證實的玻色-愛因斯坦凝聚,當時溫度降至只有1.7×10-7 K。.

玻色–爱因斯坦凝聚和绝对零度 · 绝对零度和費米氣體 · 查看更多 »

盒中氣體

在量子力學裏,盒中氣體是一个理论模型,指的是在一個盒子內,一群不會互相作用的粒子。盒子內的位勢為零,盒子外的位勢為無限大。這些粒子永遠地束縛於盒子內,無法逃出。靠著粒子與粒子之間數不盡的瞬時碰撞,盒中氣體得以保持熱力平衡狀況。盒中氣體這個簡單的理論模型可以用來描述經典理想氣體,也可以用來描述各種各樣的量子理想氣體,像費米氣體、玻色氣體、黑體輻射、等等。 應用馬克士威-玻茲曼統計、玻色-愛因斯坦統計、與費米-狄拉克統計的理論結果,取非常大的盒子的極限,表達能量態的簡併為一個微分,然後以積分來總合每一個能量態,再用配分函數或大配分函數計算氣體的熱力性質。這計算的結果可以用來分析正質量粒子氣體或零質量粒子氣體的性質。 此篇文章是盒中粒子理論的進階。閱讀此篇文章前,必須先了解盒中粒子理論。.

玻色–爱因斯坦凝聚和盒中氣體 · 盒中氣體和費米氣體 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

玻色–爱因斯坦凝聚和阿尔伯特·爱因斯坦 · 費米氣體和阿尔伯特·爱因斯坦 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

玻色–爱因斯坦凝聚和量子力学 · 費米氣體和量子力学 · 查看更多 »

上面的列表回答下列问题

玻色–爱因斯坦凝聚和費米氣體之间的比较

玻色–爱因斯坦凝聚有38个关系,而費米氣體有23个。由于它们的共同之处5,杰卡德指数为8.20% = 5 / (38 + 23)。

参考

本文介绍玻色–爱因斯坦凝聚和費米氣體之间的关系。要访问该信息提取每篇文章,请访问: