我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

玻尔兹曼方程和纳维-斯托克斯方程

快捷方式: 差异相似杰卡德相似系数参考

玻尔兹曼方程和纳维-斯托克斯方程之间的区别

玻尔兹曼方程 vs. 纳维-斯托克斯方程

玻尔兹曼方程或玻尔兹曼输运方程(Boltzmann transport equation,BTE)是一个描述非热力学平衡状态的热力学系统统计行为的偏微分方程,由路德维希·玻尔兹曼于1872年提出。Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3关于此方程描述的系统,一个经典的例子是空间中一具有温度梯度的流体。构成此流体的微粒通过随机而具有偏向性的流动使得热量从较热的区域流向较冷的区域。 在现今的论文中,“玻尔兹曼方程“这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量(如能量,电荷或粒子数)的变化的动力学方程。 波尔兹曼方程并不对流体中每个粒子的位置和动量做统计分析,而只考虑一群同时占据着空间中任意小(在数学上写作 d^3\mathbf )区域,且以位置矢量 \mathbf 末端为中心的粒子。这群粒子的动量在一段极短的时间内,相对于动量矢量 \mathbf 只有几乎同样小的变化(因此这些粒子在动量空间中也占据着任意小区域 d^3\mathbf )。 波尔兹曼方程可用于确定物理量是如何变化的,例如流体在输运过程中的热能和动量。我们还可以由此推导出其他的流体特征性质,例如粘度,导热性,以及导电率(将材料中的载流子视为气体)Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3。详见对流扩散方程式。 波尔兹曼方程是一个非线性。方程中的未知函数是一个包含了粒子空间位置和动量的六维概率密度函数。此方程的解的存在性和唯一性问题仍然没有完全解决,但最近发表的一些结果还是能够让人看到解决此问题的希望。. 纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。 因为纳维尔-斯托克斯方程可用于描述大量对学术研究和经济生活中重要现象的物理过程,它们是有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。 纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和壓力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。 这表示对于给定的物理问题,比如用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。 对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。 虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。.

之间玻尔兹曼方程和纳维-斯托克斯方程相似

玻尔兹曼方程和纳维-斯托克斯方程有(在联盟百科)9共同点: 动量压强張量爱因斯坦求和约定無窮小量熱導率质量黏度流体

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

动量和玻尔兹曼方程 · 动量和纳维-斯托克斯方程 · 查看更多 »

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

压强和玻尔兹曼方程 · 压强和纳维-斯托克斯方程 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

張量和玻尔兹曼方程 · 張量和纳维-斯托克斯方程 · 查看更多 »

爱因斯坦求和约定

在數學裏,特別是將線性代數套用到物理時,愛因斯坦求和約定(Einstein summation convention)是一種標記的約定,又稱為愛因斯坦標記法(Einstein notation),在處理關於坐標的方程式時非常有用。這約定是由阿爾伯特·愛因斯坦於1916年提出的。後來,愛因斯坦與友人半開玩笑地說:「這是數學史上的一大發現,若不信的話,可以試著返回那不使用這方法的古板日子。」 按照愛因斯坦求和約定,當一個單獨項目內有標號變數出現兩次,一次是上標,一次是下標時,則必須總和所有這單獨項目的可能值。通常而言,標號的標值為1、2、3(代表維度為三的歐幾里得空間),或0、1、2、3(代表維度為四的時空或閔可夫斯基時空)。但是,標值可以有任意值域,甚至(在某些應用案例裏)無限集合。這樣,在三維空間裏, 的意思是 請特別注意,上標並不是指數,而是標記不同坐標。例如,在直角坐標系裏,x^1\,\!、x^2\,\!、x^3\,\!分別表示x\,\!坐標、y\,\!坐標、z\,\!坐標,而不是x\,\!、x\,\!的平方、x\,\!的立方。.

爱因斯坦求和约定和玻尔兹曼方程 · 爱因斯坦求和约定和纳维-斯托克斯方程 · 查看更多 »

無窮小量

無窮小量是數學分析中的一個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。在經典的微積分或數學分析中,無窮小量通常它以函數、序列等形式出現,例如,一個序列a.

無窮小量和玻尔兹曼方程 · 無窮小量和纳维-斯托克斯方程 · 查看更多 »

熱導率

热导率k是指材料直接传导热能的能力,或称热传导率。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的熱能。热导率的单位为瓦米-1开尔文-1 W \over\ m K。 热导率k.

熱導率和玻尔兹曼方程 · 熱導率和纳维-斯托克斯方程 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

玻尔兹曼方程和质量 · 纳维-斯托克斯方程和质量 · 查看更多 »

黏度

黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.

玻尔兹曼方程和黏度 · 纳维-斯托克斯方程和黏度 · 查看更多 »

流体

流体(Fluid)就是在承受剪應力時將會發生連續變形的物體。气体和液体都是流体。流体沒有一定形狀,几乎可以任意改变形態,或者分裂。.

流体和玻尔兹曼方程 · 流体和纳维-斯托克斯方程 · 查看更多 »

上面的列表回答下列问题

玻尔兹曼方程和纳维-斯托克斯方程之间的比较

玻尔兹曼方程有54个关系,而纳维-斯托克斯方程有57个。由于它们的共同之处9,杰卡德指数为8.11% = 9 / (54 + 57)。

参考

本文介绍玻尔兹曼方程和纳维-斯托克斯方程之间的关系。要访问该信息提取每篇文章,请访问: