我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

狄利克雷函数和积分

快捷方式: 差异相似杰卡德相似系数参考

狄利克雷函数和积分之间的区别

狄利克雷函数 vs. 积分

利克雷函数(Dirichlet function)是一个定义在实数范围上、值域为的函数,是處處不連續函數。 当. 积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

之间狄利克雷函数和积分相似

狄利克雷函数和积分有(在联盟百科)7共同点: 实数导数函数勒貝格積分积分连续函数极限 (数学)

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和狄利克雷函数 · 实数和积分 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

导数和狄利克雷函数 · 导数和积分 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

函数和狄利克雷函数 · 函数和积分 · 查看更多 »

勒貝格積分

勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.

勒貝格積分和狄利克雷函数 · 勒貝格積分和积分 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

狄利克雷函数和积分 · 积分和积分 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

狄利克雷函数和连续函数 · 积分和连续函数 · 查看更多 »

极限 (数学)

极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.

极限 (数学)和狄利克雷函数 · 极限 (数学)和积分 · 查看更多 »

上面的列表回答下列问题

狄利克雷函数和积分之间的比较

狄利克雷函数有15个关系,而积分有64个。由于它们的共同之处7,杰卡德指数为8.86% = 7 / (15 + 64)。

参考

本文介绍狄利克雷函数和积分之间的关系。要访问该信息提取每篇文章,请访问: