之间物质状态和电子相似
物质状态和电子有(在联盟百科)30共同点: 原子,原子轨道,夸克,中子,临界点 (热力学),化學鍵,分子,玻璃,磁矩,离子,离子键,等离子体,绝对零度,熱導率,高溫超導,質子,超导现象,过冷,阿尔伯特·爱因斯坦,蒸氣,自旋,離域電子,電荷,恒星,核聚变,歐洲核子研究組織,氦,气体,温度,晶体。
原子
原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.
原子轨道
原子軌域(atomorbital;atomic orbital),又稱軌態,是以數學函數描述原子中電子似波行為陳藝菁、張祖辛,,國科會高瞻計畫資源平台。2010年12月11日查閱。。此波函數可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置。「軌域」便是指在波函數界定下,電子在--空間出現機率較大的區域。具體而言,原子軌域是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌域波函數描述。 現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)運行。然而,電子不能被視為形狀固定的固體粒子,原子軌域也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的「大氣」(電子),分布於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌域才能精準符合「大氣」的形狀。當原子中有越來越多電子時,電子越傾向均勻分布在原子核四周的空間體積中,因此「電子雲」越傾向分布在特定球形區域內(區域內電子出現機率較高)。 在原子物理學的運算中,複雜的電子函數常被簡化成較容易的原子軌域函數組合。雖然多電子原子的電子並不能以「一或二個電子之原子軌域」的理想圖像解釋,它的波函數仍可以分解成原子軌域函數組合,以原子軌域理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌域「構成」,每個原子軌域內只含一或二個電子。.
夸克
夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.
中子
| magnetic_moment.
临界点 (热力学)
-- 在熱力學中,臨界点是可使一物質以液態存在的最高溫度或以氣態存在的最高壓強,當物質的溫度、壓強超過此界線——即臨界温度及臨界壓強——會相變成同時擁有液態及氣態特徵的流體:超臨界流體。 临界温度下的p-V等温线上,在临界点处的一阶、二阶导数均为零,即:.
临界点 (热力学)和物质状态 · 临界点 (热力学)和电子 ·
化學鍵
#重定向 化学键.
分子
分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.
玻璃
玻璃是一種呈玻璃態的无定形体,熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。 玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫。 因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三棱鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃。 玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括碗、花瓶、瓶子、玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮、彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。 在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化的无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液及聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力、聚碳酸酯及PET)的重量較輕,可以取代傳統的矽玻璃。 玻璃在中國古代亦稱琉璃,日語漢字以硝子代表。.
磁矩
磁矩是磁鐵的一種物理性質。處於外磁場的磁鐵,會感受到力矩,促使其磁矩沿外磁場的磁場線方向排列。磁矩可以用向量表示。磁鐵的磁矩方向是從磁鐵的指南極指向指北極,磁矩的大小取決於磁鐵的磁性與量值。不只是磁鐵具有磁矩,載流迴路、電子、分子或行星等等,都具有磁矩。 科學家至今尚未發現宇宙中存在有磁單極子。一般磁性物質的磁場,其泰勒展開的多極展開式,由於磁單極子項目恆等於零,第一個項目是磁偶極子項、第二個項目是磁四極子(quadrupole)項,以此类推。磁矩也分為磁偶極矩、磁四極矩等等部分。從磁矩的磁偶極矩、磁四極矩等等,可以分別計算出磁場的磁偶極子項目、磁四極子項目等等。隨著距離的增遠,磁偶極矩部分會變得越加重要,成為主要項目,因此,磁矩這術語時常用來指稱磁偶極矩。有些教科書內,磁矩的定義與磁偶極矩的定義相同。.
离子
離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.
离子键
离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.
等离子体
--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.
绝对零度
絕對零度(absolute zero)是熱力學的最低溫度,是粒子动能低到量子力学最低点时物质的温度。绝对零度是僅存於理論的下限值,其熱力學溫標寫成K,等於攝氏溫標零下273.15度(即−273.15℃)。 物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分佈,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,根據熱力學第二定律,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。 有關物質接近絕對零度時的行為,可初步觀察。定義如下: 其中h為普朗克常數、m為粒子的質量、k為波茲曼常數、T為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是在1995年首次被實驗證實的玻色-愛因斯坦凝聚,當時溫度降至只有1.7×10-7 K。.
熱導率
热导率k是指材料直接传导热能的能力,或称热传导率。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的熱能。热导率的单位为瓦米-1开尔文-1 W \over\ m K。 热导率k.
高溫超導
溫超導(High-temperature superconductivity,High Tc)是一種物理現象,指一些具有較其他超導物質相對較高的臨界溫度的物質在液態氮的環境下產生的超導現象。.
質子
|magnetic_moment.
超导现象
超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度(Tc)。超导现象的特征是零电阻和完全抗磁性。.
过冷
过冷(Supercooling,又譯超冷凍)是一種物理現象,透過降低液体或气体的温度,但不使其凝固的过程,能做到讓水瞬間凝冰的效果。.
阿尔伯特·爱因斯坦
阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.
物质状态和阿尔伯特·爱因斯坦 · 电子和阿尔伯特·爱因斯坦 ·
蒸氣
蒸氣是指处于液态或固态的物质的周围所包含的相同物质的气态组分。与纯的气态物质不同的是,蒸氣必然伴随着相同物质的另一状态(固态或液态);如果固态或液态的物质完全转化为蒸氣,则此时的蒸氣就不再称为蒸氣而是定义为纯的气态物质。蒸氣来源与沸点以下的液态物质的蒸发或者固态物质的昇華。由于有蒸氣的存在,很多物质都存在蒸氣壓。.
自旋
在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.
離域電子
離域電子(delocalized electron),也称游離電子,是在分子、離子或固體金屬中不止與單一原子或單一共價鍵有關係的電子。 游離電子包含在分子軌道中,延伸到幾個相鄰的原子。一般来讲,離域電子存在于共轭系統和化合物中。人們漸漸地了解到,σ鍵中的電子也會游離。例如甲烷中的成键電子是由五個原子共享的。更多细节详见分子軌道理論。.
電荷
在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
核聚变
--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.
歐洲核子研究組織
歐洲核子研究組織(法语:Organisation Européenne pour la Recherche Nucléaire;英文:European Organization for Nuclear Research,通常被簡稱為CERN ),是世界上最大的粒子物理學實驗室,也是全球資訊網的發祥地。它成立於1954年9月29日,總部位於瑞士日內瓦西北部郊區的法瑞邊境上,享有治外法權。CERN目前有21個成員國。以色列是第一個也是目前唯一一個非歐洲成員國。 CERN也被用來稱呼它的實驗室,其主要功能是為高能物理學研究的需要,提供粒子加速器和其它基礎設施,以進行許多國際合作的實驗。同時也設立了資料處理能力很強的大型電腦中心,協助實驗數據的分析,供其他地方的研究員使用,形成了一個龐大的網絡中樞。 歐洲核子研究組織現在已經聘用大約三千名的全職員工。並有來自80個國籍的大約6500位科學家和工程師,代表500餘所大學機構,在CERN進行試驗。這大約佔了世界上的粒子物理學圈子的一半。 粒子物理學博物館歡迎一般公眾在辦公時間參觀。除此之外,事前預約的話每天上下午共有兩個時段可以參觀實際的實驗工作,並備有導覽說明。導覽員來自各國的實驗合作者,可以提供多種語言的嚮導。.
氦
氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.
气体
气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.
温度
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.
晶体
晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.
上面的列表回答下列问题
- 什么物质状态和电子的共同点。
- 什么是物质状态和电子之间的相似性
物质状态和电子之间的比较
物质状态有92个关系,而电子有373个。由于它们的共同之处30,杰卡德指数为6.45% = 30 / (92 + 373)。
参考
本文介绍物质状态和电子之间的关系。要访问该信息提取每篇文章,请访问: