徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

物理学史和电磁学

快捷方式: 差异相似杰卡德相似系数参考

物理学史和电磁学之间的区别

物理学史 vs. 电磁学

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。. 电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

之间物理学史和电磁学相似

物理学史和电磁学有(在联盟百科)70共同点: 力矩原子原子核古希腊場線安培力定律安培定律安德烈-玛丽·安培对映异构亞歷山德羅·伏打亨利·卡文迪什库仑定律以太弱相互作用强相互作用伽利略变换引力场 (物理)场论分子环流假说傅立叶光速皇家学会琥珀磁通量热传导电子电磁场电磁波...电荷量电解电阻物理学狭义相对论菲利克斯·沙伐靜磁學靜電學静电西莫恩·德尼·泊松高斯定律让-巴蒂斯特·毕奥路易吉·伽伐尼麦克斯韦方程组迈克耳孙-莫雷实验阿尔伯特·爱因斯坦阿尔伯特·迈克耳孙電弱交互作用電動勢電磁力電荷連續性方程式抗磁性格奥尔格·欧姆楞次定律欧姆定律毕奥-萨伐尔定律汉弗里·戴维汉斯·奥斯特泊松方程泰勒斯法拉第电磁感应定律法拉第效应洛伦兹变换流体力学海因里希·鲁道夫·赫兹海因里希·楞次斯托克斯定理意大利拉普拉斯方程 扩展索引 (40 更多) »

力矩

在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.

力矩和物理学史 · 力矩和电磁学 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

原子和物理学史 · 原子和电磁学 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

原子核和物理学史 · 原子核和电磁学 · 查看更多 »

古希腊

位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.

古希腊和物理学史 · 古希腊和电磁学 · 查看更多 »

場線

場線是由向量場和初始點設定的軌跡。在空間裏,向量場在每一個位置,都設定了一個方向。只要按照向量場在每一個位置所指的方向來追蹤路徑,就可以素描出正確的場線。更精確地說,場線在每一個位置的切線必須平行於向量場在那一個位置的方向。 在空間內,由於,伴隨著每一個點的向量,組合起來,構成了向量場,場線可以說是一個專為向量場精心打造的顯像工具,能夠清楚地顯示出向量場在每一個位置的方向。假若向量場描述的是一個速度場,則場線跟隨的是流體的流線。在磁鐵的四周灑散鐵粉,可以清楚地顯示出磁場的磁場線。靜電荷的場線稱為電場線,從正電荷往外擴散,朝著負電荷聚集。 對於一個向量場,假若能夠完整地描述其所有的場線,那麼,這向量場在每一個位置的方向已完全地被設定了。為了同時表示出向量場的大小值,必須變化場線的數量,使得場線在任意位置的密度等於向量場在那位置的大小值,也就是說單位面積所含的場線越多,則向量場越強,反之則向量場越弱。 場線的圖案能夠用來表達某些重要的向量微積分概念。場線從某一個區域的往外擴散或往內聚斂可以表達散度。場線的螺旋圖案可以表達旋度。 雖然大多數時候,場線只是一個數學建構,在某些狀況,場線具有實際的物理意義。例如,在電漿物理學裏,處於同一條場線的電子或離子會強烈地相互作用;而處於不同場線的粒子,通常不會相互作用。 1851年,法拉第提出了場線的概念。.

場線和物理学史 · 場線和电磁学 · 查看更多 »

安培力定律

在靜磁學裏,安培力定律專門描述兩條載流導線相互作用的吸引力或排斥力,又稱為安培力,是由載流導線的電流所產生的磁場(根據必歐-沙伐定律),與對方的移動電荷的速度耦合而形成的勞侖茲力。安培力定律是因安德烈-瑪麗·安培而命名。.

安培力定律和物理学史 · 安培力定律和电磁学 · 查看更多 »

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

安培定律和物理学史 · 安培定律和电磁学 · 查看更多 »

安德烈-玛丽·安培

#重定向 安德烈-馬里·安培.

安德烈-玛丽·安培和物理学史 · 安德烈-玛丽·安培和电磁学 · 查看更多 »

对映异构

對映異構體(Enantiomer),又稱對掌異構物、光學異構物、鏡像異構物或对映异构体或旋光异构体,不能與彼此立體異構體鏡像完全重疊。 互為鏡像(mirror images)的分子。不对称碳原子和四種不同的原子或原子基團連結,不對稱碳為手性中心。當有n個手性中心時,則最多有2的n次方立體異構物。 來源於希臘文,具有左手對右手那樣鏡像關係的一對物質。無論怎樣擺佈都不能使這些鏡像成為同一物。有對稱平面的物質不能是對映體,因為它和它的鏡像是等同的。乳酸那樣的分子對映體,除了與其他不對稱分子的化學反應以及與偏振光作用外,具有完全相同的化學物質。對映體在結晶學中很重要,因為許多晶體是由單個分子的右手型和左手型交替排列的。對晶體的完整描述,就是要說明這些型體彼此間是如何混合的。兩種光學活性的酒石酸,即所謂d-酒石酸和l-酒石酸就是一對對映體的實例。.

对映异构和物理学史 · 对映异构和电磁学 · 查看更多 »

亞歷山德羅·伏打

亚历山德罗·朱塞佩·安东尼奥·安纳塔西欧·伏打伯爵(Count Alessandro Giuseppe Antonio Anastasio Volta,),義大利物理學家,在19世紀因發明電池而聞名,後來受封為伯爵。.

亞歷山德羅·伏打和物理学史 · 亞歷山德羅·伏打和电磁学 · 查看更多 »

亨利·卡文迪什

亨利·卡文迪什(Henry Cavendish,又译亨利·卡文迪许、亨利·卡文狄西、亨利·卡文迪西,),英国物理学家、化学家。他首次对氢气的性质进行了细致的研究,证明了水并非单质,预言了空气中稀有气体的存在。他首次发现了库伦定律和欧姆定律,将电势概念广泛应用于电学,并精确测量了地球的密度,被认为是牛顿之后英国最伟大的科学家之一。.

亨利·卡文迪什和物理学史 · 亨利·卡文迪什和电磁学 · 查看更多 »

库仑定律

库仑定律(Coulomb's law),法国物理学家查尔斯·库仑於1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。庫侖定律闡明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。.

库仑定律和物理学史 · 库仑定律和电磁学 · 查看更多 »

以太

以太(Luminiferous aether、aether 或 ether)或譯為光乙太,是古希腊哲学家亞里斯多德所设想的一种物质,為五元素之一。19世紀的物理學家,認為它是一種曾被假想的電磁波的傳播媒質。但後來的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界抛弃。.

以太和物理学史 · 以太和电磁学 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

弱相互作用和物理学史 · 弱相互作用和电磁学 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

强相互作用和物理学史 · 强相互作用和电磁学 · 查看更多 »

伽利略变换

伽利略變換是-zh-cn:经典力学; zh-hk:經典力學; zh-tw:古典力學-中用以在兩個只以均速相對移動的參考系之間變換的方法,屬於一種被動態變換。伽利略变换明顯成立的公式在物體以接近光速運動时、亦或者是电磁过程不会成立,這是相對論效應造成的。 伽利略·伽利萊在解釋均速運動時制定了這一套概念。他用其解釋球體滾下斜面這一力學問題,並測量出地球表面引力加速度的數值。.

伽利略变换和物理学史 · 伽利略变换和电磁学 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

引力和物理学史 · 引力和电磁学 · 查看更多 »

场 (物理)

在物理裡,場(Field)是一個以時空為變數的物理量。 場可以分為純量場、向量場和張量場等,依據場在時空中每一點的值是純量、向量還是張量而定。例如,古典重力場是一個向量場:標示重力場在時空中每一個的值需要三個量,此即為重力場在每一點的重力場向量分量。更進一步地,在每一範疇(純量、向量、張量)之中,場還可以分為「古典場」和「量子場」兩種,依據場的值是數字或量子算符而定。 場被認為是延伸至整個空間的,但實際上,每一個已知的場在夠遠的距離下,都會縮減至無法量測的程度。例如,在牛頓萬有引力定律裡,重力場的強度是和距離平方成反比的,因此地球的重力場會隨著距離很快地變得不可測得(在宇宙的尺度之下)。 定義場是一個「空間裡的數」,這不應該減損場在物理上所有的真實性。「場佔有空間。場含有能量、动量。場的存在排除了真正的真空。」 真空中沒有物質,但並不是沒有場的。場形成了一個「空間的狀態」,因此當我們在場內放入一個粒子,這個粒子會感覺到力。 當一個電荷移動時,另一個電荷並不會立刻感應到。第一個電荷會感應到一個反作用力,並獲得動量,但第二個電荷則沒有感應,直到第一個電荷移動的影響以光速傳遞到第二個電荷那裡,並給予其動量之後。場的存在解決了關於第二個電荷移動前,動量存在在哪裡的問題。因為依據動量守恆定律,動量必存在於某處。物理學家認為動量應該存在於場之中。如此的認定讓物理學家們相信電磁場是真實的存在,使得場的概念成為整個現代物理的範式。.

场 (物理)和物理学史 · 场 (物理)和电磁学 · 查看更多 »

场论

场论可以指:.

场论和物理学史 · 场论和电磁学 · 查看更多 »

分子环流假说

#重定向 分子电流假说.

分子环流假说和物理学史 · 分子环流假说和电磁学 · 查看更多 »

傅立叶

#重定向 约瑟夫·傅里叶.

傅立叶和物理学史 · 傅立叶和电磁学 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

光速和物理学史 · 光速和电磁学 · 查看更多 »

皇家学会

倫敦皇家自然知識促進學會的會長、理事会及追隨者們(The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge),簡稱皇家学会(Royal Society),是英国资助科学发展的组织,成立于1660年,并于1662年、1663年、1669年领到皇家的各种特許狀。学会宗旨是促进自然科学的发展,它是世界上历史最长而又从未中断过的科学学会,在英国起着国家科学院的作用。英國君主是学会的保护人。.

物理学史和皇家学会 · 电磁学和皇家学会 · 查看更多 »

琥珀

琥珀是松科松屬植物的樹脂化石,並非樹的汁液,其狀態透明似水晶,色澤如瑪瑙。自新石器時代開始,它的美就被人們讚譽。琥珀能製成各種裝飾品,是從古至今備受重視的寶石。"Amber" (2004).

物理学史和琥珀 · 琥珀和电磁学 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

物理学史和磁 · 电磁学和磁 · 查看更多 »

磁通量

磁通量,符號為 \Phi_B,是通過某给定曲面的磁場(亦称为磁通量密度)的大小的度量。磁通量的国际单位制單位是韦伯。.

物理学史和磁通量 · 电磁学和磁通量 · 查看更多 »

热传导

热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可以做热交换器材料,而金屬傳導能力依次爲銀>銅>金>鋁;传导性能不好的,如石棉,可以做热绝缘材料。.

热传导和物理学史 · 热传导和电磁学 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

物理学史和电子 · 电子和电磁学 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

物理学史和电磁场 · 电磁场和电磁学 · 查看更多 »

电磁波

#重定向 电磁辐射.

物理学史和电磁波 · 电磁学和电磁波 · 查看更多 »

电荷量

电荷量简称电量,是物体所带电荷的量值,电量的国际单位是库仑,符号\mathrm。常用的更小单位是\mathrm,读作微库仑,1\mathrm.

物理学史和电荷量 · 电磁学和电荷量 · 查看更多 »

电解

电解是指将電流通过电解质溶液或熔融态物质,而在阴極和阳极上引起氧化还原反应的过程。电化学电池在接受外加电压(即充电過程)时,會发生电解过程。所有離子化合物都是電解質,因為它們溶在液體中時,離子可以自由移動,所以可導電。.

物理学史和电解 · 电磁学和电解 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

物理学史和电阻 · 电磁学和电阻 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

物理学和物理学史 · 物理学和电磁学 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

物理学史和狭义相对论 · 狭义相对论和电磁学 · 查看更多 »

菲利克斯·沙伐

菲利克斯·沙伐(Félix Savart ,)是法國一位物理學家和醫生。他與讓-巴蒂斯特·必歐共同創建了必歐-沙伐定律。這是靜磁學的一個基本定律,精確地描述載流導線的電流所產生的磁場。沙伐對於聲學也很有研究。他發展出一種聲學儀器,沙伐音輪 (Savart wheel) ,可以用來研究聽覺的最低頻率限度。現在不再常用的音程度量單位,沙伐 (savart) ,也是因他而命名。.

物理学史和菲利克斯·沙伐 · 电磁学和菲利克斯·沙伐 · 查看更多 »

靜磁學

磁學(Magnetostatics)是電磁學的分支,專門研究电流稳定(不随时间变化)的系统内磁場。在靜電學中,電荷是穩定不變的;在這裡,電流是穩定不變的。磁化强度不需要是静态的;静磁学的方程可以用于预测在纳秒或更小时间尺度内发生的快速磁性交换事件。 事實上即使電流不是靜態,只要電流交替不迅速,靜磁學是一個良好的近似。静磁学广泛应用于微磁学,例如磁记录设备的模型。.

物理学史和靜磁學 · 电磁学和靜磁學 · 查看更多 »

靜電學

電學是研究「靜止電荷」的特性及規律的一門學科,電學的領域之一。靜電即電荷在靜止時的狀態,沒有電荷流動。而靜止電荷所建立的電場稱為靜電場,是指不隨時間變化的電場,該靜電場對於場中的電荷有作用力。.

物理学史和靜電學 · 电磁学和靜電學 · 查看更多 »

静电

静电是电荷在物质系统中的不平衡分布产生的现象。用毛皮摩擦琥珀、丝绸摩擦玻璃棒等方法均能使物体带电。物体带电后,电荷会保持在物体上,除非被其他物体移走,所以称之为“静电”。静电与电流不同,后者是电荷在导体中的定向移动产生的电学现象。带电物体往往具有吸引轻小物体(比如纸屑)的性质。.

物理学史和静电 · 电磁学和静电 · 查看更多 »

西莫恩·德尼·泊松

西莫恩·德尼·泊松男爵(Siméon Denis Poisson,法语,),法国数学家、几何学家和物理学家。.

物理学史和西莫恩·德尼·泊松 · 电磁学和西莫恩·德尼·泊松 · 查看更多 »

高斯定律

斯定律(Gauss' law)表明在闭合曲面内的电荷分佈與產生的電場之間的關係:.

物理学史和高斯定律 · 电磁学和高斯定律 · 查看更多 »

让-巴蒂斯特·毕奥

让-巴蒂斯特·毕奥(Jean-Baptiste Biot,),法国物理学家、天文学家和数学家。在电磁学研究中曾提出知名的毕奥-萨伐尔定律。.

物理学史和让-巴蒂斯特·毕奥 · 电磁学和让-巴蒂斯特·毕奥 · 查看更多 »

路易吉·伽伐尼

路易吉·阿罗西奥·伽伐尼(意大利文:Luigi Aloisio Galvani, 拉丁文:Aloysius Galvani))是意大利醫生、物理學家与哲学家,現代產科學的先驅者。他在意大利博洛尼亞出生和逝世。在1780年,他發現死青蛙的腿部肌肉接觸电火花時會顫動,從而發現神經元和肌肉會產生電力。他是第一批涉足生物电领域研究的人物之一,这一领域在今天仍然在研究神经系统的电信号和电模式。.

物理学史和路易吉·伽伐尼 · 电磁学和路易吉·伽伐尼 · 查看更多 »

麦克斯韦方程组

#重定向 馬克士威方程組.

物理学史和麦克斯韦方程组 · 电磁学和麦克斯韦方程组 · 查看更多 »

迈克耳孙-莫雷实验

迈克耳孙-莫雷实验是为了验证“以太”存在与否而做的一个实验,1887年由阿尔伯特·迈克耳孙与爱德华·莫雷合作在美国的克利夫兰进行。.

物理学史和迈克耳孙-莫雷实验 · 电磁学和迈克耳孙-莫雷实验 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

物理学史和阿尔伯特·爱因斯坦 · 电磁学和阿尔伯特·爱因斯坦 · 查看更多 »

阿尔伯特·迈克耳孙

阿尔伯特·亚伯拉罕·迈克耳孙(Albert Abraham Michelson,),又譯「邁克生」、「迈克耳逊」,波蘭裔美国藉物理学家,以测量光速而闻名,尤其是迈克耳孙-莫雷实验。1907年诺贝尔物理学奖获得者。.

物理学史和阿尔伯特·迈克耳孙 · 电磁学和阿尔伯特·迈克耳孙 · 查看更多 »

電弱交互作用

在粒子物理學中,電弱交互作用是電磁作用與弱交互作用的統一描述,而這兩種作用都是自然界中四種已知基本力。雖然在日常的低能量情況下,電磁作用與弱作用存在很大的差異,然而在超過統一溫度,即數量級在100 GeV的情況下,這兩種作用力會統合成單一的電弱作用力。因此如果宇宙是足夠的熱(約1015K,在大爆炸發生不久以後溫度才降至比上述低的水平),就只有一種電弱作用力,不會有分開的電磁作用與弱交互作用。 由於將基本粒子的電磁作用與弱作用統一的這項貢獻,阿卜杜勒·薩拉姆、謝爾登·格拉肖以及史蒂文·溫伯格獲頒1979年的諾貝爾物理獎。電弱交互作用的理論目前經以下兩個實驗證明存在:.

物理学史和電弱交互作用 · 电磁学和電弱交互作用 · 查看更多 »

電動勢

在電路學裏,電動勢(electromotive force,縮寫為emf)表徵一些電路元件供應電能的特性。這些電路元件稱為「電動勢源」。電化電池、太陽能電池、燃料電池、熱電裝置、發電機等等,都是電動勢源。電動勢源所供應的能量每單位電荷是其電動勢 。假設,電荷 Q\, 移動經過一個電動勢源後,獲得了能量 W\, ,則此元件的電動勢定义為 \mathcal.

物理学史和電動勢 · 电磁学和電動勢 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

物理学史和電磁力 · 电磁学和電磁力 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

物理学史和電荷 · 电磁学和電荷 · 查看更多 »

連續性方程式

在物理學裏,連續性方程式(continuity equation)乃是描述守恆量傳輸行為的偏微分方程式。由於在各自適當條件下,質量、能量、動量、電荷等等,都是守恆量,很多種傳輸行為都可以用連續性方程式來描述。 連續性方程式乃是定域性的守恆定律方程式。與全域性的守恆定律相比,這種守恆定律比較強版。在本條目內的所有關於連續性方程式的範例都表達同樣的點子──在任意區域內某種守恆量總量的改變,等於從邊界進入或離去的數量;守恆量不能夠增加或減少,只能夠從某一個位置遷移到另外一個位置。 每一種連續性方程式都可以以積分形式表達(使用通量積分),描述任意有限區域內的守恆量;也可以以微分形式表達(使用散度算符),描述任意位置的守恆量。應用散度定理,可以從微分形式推導出積分形式,反之亦然。.

物理学史和連續性方程式 · 电磁学和連續性方程式 · 查看更多 »

抗磁性

抗磁性(Diamagnetism,亦作反磁性)是一些類別的物質,當處在外加磁場中,會對磁場產生的微弱斥力的一種磁性現象。.

抗磁性和物理学史 · 抗磁性和电磁学 · 查看更多 »

格奥尔格·欧姆

格奥尔格·西蒙·欧姆(Georg Simon Ohm,),德国物理学家。欧姆发现了电阻中电流与电压的正比关系,即著名的欧姆定律;他还证明了导体的电阻与其长度成正比,与其横截面积和传导系数成反比;以及在稳定电流的情况下,电荷不仅在导体的表面上,而且在导体的整个截面上运动。电阻的国际单位制“欧姆”以他的名字命名。.

格奥尔格·欧姆和物理学史 · 格奥尔格·欧姆和电磁学 · 查看更多 »

楞次定律

在電磁學裏,楞次定律(Lenz's law)能夠找到由电磁感应產生的电动势和感應電流的方向。對於電磁感應所涉及的非保守力,這定律可以視為能量守恆定律的延伸。楞次定律是由德国物理学家海因里希·楞次在1834年发现的,其内容为 : 只使用法拉第電磁感應定律,並不容易決定感應电流方向。楞次定律給出了一種既簡單又直觀地能夠找到感應電流方向的方法。.

楞次定律和物理学史 · 楞次定律和电磁学 · 查看更多 »

欧姆定律

在電路學裏,欧姆定律(Ohm's law)表明,导电体两端的电压与通过导电体的电流成正比,以方程式表示, 其中,V是電壓(也可以標記為U,方程式表示為U.

欧姆定律和物理学史 · 欧姆定律和电磁学 · 查看更多 »

毕奥-萨伐尔定律

在靜磁學裏,必歐-沙伐定律(--)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關。必歐-沙伐定律是以法國物理學者讓-巴蒂斯特·必歐與菲利克斯·沙伐命名。 必歐-沙伐定律表明,假設源位置為\mathbf'的微小線元素\mathrm\boldsymbol'有電流I,則\mathrm\boldsymbol' 作用於場位置\mathbf的磁場為 其中,\mathrm\mathbf是微小磁場(這篇文章簡稱磁通量密度為磁場),\mu_0是磁常數。 已知電流密度\mathbf(\mathbf'),則有: 其中,\mathrm^3'為微小體積元素,\mathbb'是積分的體積。 在空氣動力學中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算渦線 (vortex line)導出的速度。.

毕奥-萨伐尔定律和物理学史 · 毕奥-萨伐尔定律和电磁学 · 查看更多 »

汉弗里·戴维

汉弗里·戴维爵士,第一代從男爵(Sir Humphry Davy, 1st Baronet,),英国化学家。是发现化学元素最多的人,被譽為「無機化學之父」。一般認為戴維是燈泡和第一代礦工燈的發明者。.

汉弗里·戴维和物理学史 · 汉弗里·戴维和电磁学 · 查看更多 »

汉斯·奥斯特

汉斯·克海斯提安·奥斯特(Hans Christian Ørsted,),丹麦物理学家、化学家和文學家。在物理學領域,他首先发现載流導線的電流會產生作用力於磁針,使磁針改變方向。在化學領域,他發現了鋁元素。十九世紀後期,在科學方面的後康德哲學和演進,由於他的寫作而更見雛形。他創建了「思想實驗」這名詞,他也是第一位明確地描述思想實驗的現代思想家。.

汉斯·奥斯特和物理学史 · 汉斯·奥斯特和电磁学 · 查看更多 »

泊松方程

泊松方程(Équation de Poisson)是數學中一個常見於靜電學、機械工程和理論物理的偏微分方程式,因法國數學家、幾何學家及物理學家泊松而得名的。.

泊松方程和物理学史 · 泊松方程和电磁学 · 查看更多 »

泰勒斯

米利都的泰勒斯(Θαλῆς ὁ Μιλήσιος,),常被稱為泰勒斯(Θαλῆς,Thalēs,Thales,),是古希腊时期的哲學家和科學家,亦是希腊最早的前苏格拉底哲学学派之一,米利都学派(亦称爱奥尼亚学派)的创始人,希腊七贤之一,西方思想史上第一个有记载留下名字的思想家,被后人称为“科学和哲学之祖”。他的学生有阿那克西曼德和阿那克西米尼等。.

泰勒斯和物理学史 · 泰勒斯和电磁学 · 查看更多 »

法拉第电磁感应定律

法拉第電磁感應定律(Faraday's law of electromagnetic induction)是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 此定律於1831年由迈克尔·法拉第發現,約瑟·亨利則是在1830年的獨立研究中比法拉第早發現這一定律,但其並未發表此發現。故這個定律被命名為法拉第定律。 本定律可用以下的公式表达: 其中: 電動勢的方向(公式中的負號)由楞次定律提供。“通過電路的磁通量”的意義會由下面的例子闡述。 傳統上有兩種改變通過電路的磁通量的方式。至於感應電動勢時,改變的是自身的電場,例如改變生成場的電流(就像變壓器那樣)。而至於動生電動勢時,改變的是磁場中的整個或部份電路的運動,例如像在同極發電機中那樣。.

法拉第电磁感应定律和物理学史 · 法拉第电磁感应定律和电磁学 · 查看更多 »

法拉第效应

在物理學,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介質內光波與磁場的一種相互作用。法拉第效應會造成偏振平面的旋轉,這旋轉與磁場朝著光波傳播方向的分量呈線性正比關係。 於1845年,麥可·法拉第发现了法拉第效應。這是最先揭示光波和電磁現象之間關係的實驗證據。由於法拉第效應顯示出,在穿過介質時,偏振光波會因為外磁場的作用,轉變偏振的方向,因此,馬克士威認為磁場是一種旋轉現象。這效應給予馬克士威重要的啟發。在於1861年發表的巨作《論物理力線》第四部份,為了突顯出自己設計的「分子渦流模型」的威力,他應用這模型來推導出法拉第效應。在1870年代,詹姆斯·馬克士威進一步發展出電磁輻射(包括可見光)的基礎理論。大多數對於光波呈透明狀況的介質(包括液體),當感受到磁場作用時,會出現這種效應。 法拉第效應會使得左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於某些介質,這性質稱為圓雙折射。由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效應所感應出的相對的相移,會造成線性偏振取向的旋轉。 法拉第效應可以應用於測量儀器。例如,法拉第效應被用於測量旋光度、或光波的振幅調變、或磁場的遙感。在自旋電子學裏,法拉第效應被用於研究半導體內部的電子自旋的極化。(Faraday rotator) 可以用於光波的調幅,是光隔離器與(optical circulator)的基礎組件,在光通訊與其它激光領域必備組件。.

法拉第效应和物理学史 · 法拉第效应和电磁学 · 查看更多 »

洛伦兹变换

洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。.

洛伦兹变换和物理学史 · 洛伦兹变换和电磁学 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

流体力学和物理学史 · 流体力学和电磁学 · 查看更多 »

海因里希·鲁道夫·赫兹

#重定向 海因里希·赫兹.

海因里希·鲁道夫·赫兹和物理学史 · 海因里希·鲁道夫·赫兹和电磁学 · 查看更多 »

海因里希·楞次

海因里希·楞次(Эмилий Христианович Ленц,转写:Heinrich Lenz,),波羅的海德國人裔的俄国物理学家、地球物理学家。 楞次1804年出生于被俄国占領的爱沙尼亚德尔帕特市(今爱沙尼亚共和国的塔尔图),16岁时以优异的成绩考入德尔帕特大学。1828年,楞次当选俄国圣彼得堡科学院的初级科学助理,1830年当选为圣彼得堡科学院通讯院士,1834年成为院士。1836年到1865年任圣彼得堡大学教授,1840年担任圣彼得堡大学数学物理系系主任,1863年当选为第一任校长。楞次1865年在意大利罗马因中风逝世。 楞次总结了安培的电动力学与法拉第的电磁感应现象后,于1833年在圣彼得堡科学院宣读了题为“关于用电动力学方法决定感生电流方向”的论文,提出了感生电动势阻止产生电磁感应的磁铁或线圈的运动,后来这条定律被称为楞次定律,在1834年的《物理学和化学年鉴》上发表。随后德国物理学家亥姆霍兹证明楞次定律实际上是电磁现象的能量守恒定律。 1842年,楞次独立于英国物理学家焦耳确定了电流与其所产生的热量的关系,也就是焦耳定律,因此焦耳定律也被称为焦耳-楞次定律。楞次还研究了不同金属的电阻率,以及电阻率与温度的关系。 除此之外,在楞次的倡导与协助下,1845年成立了俄国地理学会。.

海因里希·楞次和物理学史 · 海因里希·楞次和电磁学 · 查看更多 »

斯托克斯定理

斯托克斯定理(英文:Stokes' theorem)是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以斯托克斯爵士命名。.

斯托克斯定理和物理学史 · 斯托克斯定理和电磁学 · 查看更多 »

意大利

意大利共和国(Repubblica Italiana),通稱意大利(Italia),是一個歐洲主权國家,主要由位於南歐的靴型亞平寧半岛及两个地中海岛嶼西西里岛和撒丁岛所组成,國際代碼為IT。意大利北方的阿尔卑斯山地区与法国、瑞士、奥地利以及斯洛文尼亚接壤,其领土包围着两个微型国家——圣马力诺和梵蒂冈,而在瑞士擁有座落於盧加諾湖湖畔的意大利坎波內這個境外領土。全国行政上划分为20个大区(其中5个為自治区)、110个省與8,100个城市。首都為罗马,意大利王国在1870年將首都設置在此,而都灵(1861年-1865年)及-zh-hans:佛罗伦萨;zh-tw:佛羅倫斯;-(1865年-1870年)也曾是意大利王國的首都。根据2014年统计,意大利人口大约为6,079.5萬,領土面積約為301,338平方公里,人口密度约每平方公里201.7人,屬於溫帶氣候。意大利是歐洲人口第5多的國家,人口在世界上排名第23位。意大利因其拥有美丽的自然风光和为数众多的人类文化遗产(世界遺產數目排名全球第一)而被称为美丽的国度(Belpaese)。 現今的意大利地區是以前歐洲民族及文化的搖籃,曾孕育出羅馬文化及伊特拉斯坎文明,而意大利的首都羅馬,幾個世紀以來都是西方世界的政治中心,也曾經是羅馬帝國的首都。當羅馬帝國殞落後,意大利遭受了多次外族入侵,包括倫巴底人、東哥德人等日耳曼民族,之後還有諾曼人等。东罗马帝国曾一度重新占领意大利地区。在14世紀後,意大利轉而成為文藝復興的發源地 ,而文藝復興對歐洲影響深遠,讓歐洲思想前進了一大步。義大利過去分裂為許多王國與城邦,但是最終在1861年完成統一。其巅峰是在第二次世界大戰刚开始之前,義大利變成一個殖民帝國,把勢力範圍延伸到利比亞、厄利垂亞、-zh-hans:意属索马里兰;zh-hk:意屬索馬利蘭;zh-tw:義屬索馬利蘭;-、衣索比亞、阿爾巴尼亞、羅德島與十二群島,而且擁有中國天津的租界。 意大利也在政治、文化、科學、醫療衛生、教育、體育、藝術、時尚、宗教、料理、電影、建築、經濟及音樂等方面具有重要的影響力。米蘭是意大利的經濟及工業中心,根據2009年全球語言監察組織(Global Language Monitor)的資料,它也是世界時尚之都。在2007年造訪意大利的遊客人數位居世界第5位,總共超過4,370萬人次的國際遊客造訪,而羅馬則是歐盟國家中第3多遊客造訪的城市,也被認為世界上最美麗的十大古城之一。威尼斯則被認為是世界上最美麗的城市,《紐約時報》形容它「無疑是世界上最美麗的人造城市」。 意大利共和国是一個議會制民主共和國,是一個已開發國家,世界七大工業國之一,生活質量指數則在世界排名第8名, Economist, 2005。意大利在2014年人類發展指數列表中則名列第26位,並擁有高度人均國內生產總額。根據國內生產總額與購買力平價國內生產總值的數據,意大利分別是世界第8大與第10大經濟體。意大利的政府預算金額則是位居世界第5位。意大利是北大西洋公約和歐盟的創始會員國,也是八大工業國集團、20國集團和歐洲四大經濟體成員之一。意大利也参与經濟合作與發展組織、世界貿易組織、歐洲議會、西歐聯盟及歐洲創新中心(Central European Initiative)。意大利也參加申根協議,也是世界世界國防預算金額第9高的國家且分享北約的核武器。 意大利在歐洲及全球的軍事、文化和外交事務扮演重要的角色,首都羅馬則是世界上對於政治及文化具有重要影響力的城市,世界上許多著名的機構,例如國際農業發展基金會(International Fund for Agricultural Development)、全球在地論壇(Glocal Forum)、世界糧食計劃署及聯合國糧食及農業組織的總部都設在羅馬。意大利也擁有较高的教育指數、勞動力人口及慈善捐助金額。人均預期壽命排名世界第11位。醫療保健系統在2000年被世界衛生組織評比為世界第2。意大利也是一個全球化的國家。意大利的國家品牌價值在2009年名列世界第6位。意大利在藝術、科學和技術上擁有悠久的傳統,且至2017年共有53处世界遺產,是擁有最多世界遺產的西方國家。.

意大利和物理学史 · 意大利和电磁学 · 查看更多 »

拉普拉斯方程

拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家皮埃尔-西蒙·拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学、熱力學和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电場、引力場和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。.

拉普拉斯方程和物理学史 · 拉普拉斯方程和电磁学 · 查看更多 »

上面的列表回答下列问题

物理学史和电磁学之间的比较

物理学史有694个关系,而电磁学有109个。由于它们的共同之处70,杰卡德指数为8.72% = 70 / (694 + 109)。

参考

本文介绍物理学史和电磁学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »