我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

物理学和量子態

快捷方式: 差异相似杰卡德相似系数参考

物理学和量子態之间的区别

物理学 vs. 量子態

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。. 在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

之间物理学和量子態相似

物理学和量子態有(在联盟百科)15共同点: 加速度可觀察量守恒定律对称关系密度希尔伯特空间干涉光子系綜詮釋线性代数统计力学牛顿运动定律量子力学量子场论決定論

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

加速度和物理学 · 加速度和量子態 · 查看更多 »

可觀察量

在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。.

可觀察量和物理学 · 可觀察量和量子態 · 查看更多 »

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

守恒定律和物理学 · 守恒定律和量子態 · 查看更多 »

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

对称关系和物理学 · 对称关系和量子態 · 查看更多 »

密度

3 | symbols.

密度和物理学 · 密度和量子態 · 查看更多 »

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

希尔伯特空间和物理学 · 希尔伯特空间和量子態 · 查看更多 »

干涉

干涉可以指:.

干涉和物理学 · 干涉和量子態 · 查看更多 »

光子

| mean_lifetime.

光子和物理学 · 光子和量子態 · 查看更多 »

系綜詮釋

系综诠释是量子力学的一种诠释,也是一种最小诠释,即它提出最少的假设来表述量子力学。系综诠释有时也被称为「统计诠释」,其核心是馬克思·玻恩對於波函數給出的統計詮釋。玻恩因此基礎研究榮獲諾貝爾物理學獎。 系综诠释表明,量子態能夠描述系綜的統計性質,但量子態不一定能完備地描述單獨量子系統的性質,例如,單獨粒子。在這裏,系綜指的是,理論而言,無窮多個以相同方法製備而成的系統,而單獨系統只的是其中任何一個系統。阿爾伯特·愛因斯坦是系綜詮釋的著名支持者之一,他主張, 至今為止,系綜詮釋的最有力發言者當屬西門菲莎大學物理學教授,他撰寫的教科書《量子力學的一種現代發展》(Quantum Mechanics, a Modern Development)對於系綜詮釋有很詳細的說明。 與許多其他種詮釋不同,系綜詮釋並不試圖從任何決定性程序對於量子力學給出辯解或導引,它也不會給出任何關於量子現像真實內秉性質的說明,它只是一種對於量子態的詮釋方法。.

物理学和系綜詮釋 · 系綜詮釋和量子態 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

物理学和线性代数 · 线性代数和量子態 · 查看更多 »

统计力学

统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.

物理学和统计力学 · 统计力学和量子態 · 查看更多 »

牛顿运动定律

牛頓運動定律(Newton's laws of motion)描述物體與力之間的關係,被譽為是經典力學的基礎。這定律是英國物理泰斗艾薩克·牛頓所提出的三條運動定律的總稱,其現代版本通常這樣表述:.

牛顿运动定律和物理学 · 牛顿运动定律和量子態 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

物理学和量子力学 · 量子力学和量子態 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

物理学和量子场论 · 量子场论和量子態 · 查看更多 »

決定論

決定論(Determinism),又称拉普拉斯信条,是一种哲学立场,認為每個事件的發生,包括人類的認知、舉止、決定和行動,都有条件决定它发生,而非另外的事件发生。”决定论有很多种,取决于什么样的预先条件成为决定的因素。“各种有关决定论的理论贯穿在哲学史中,往往出于不同但有时会重叠的动机与考虑。有些形式的决定论可以从物理学上得到经验地证实或证否。与决定论直接对立的是非决定论。决定论也常常与自由意志相对比。 如果從原始宇宙以來,有一連串的事件註定地、從未中斷地發生,自由意志則是不可能的。Van Inwagen, Peter, 1983, An Essay on Free Will, Oxford: Clarendon Press.

決定論和物理学 · 決定論和量子態 · 查看更多 »

上面的列表回答下列问题

物理学和量子態之间的比较

物理学有275个关系,而量子態有62个。由于它们的共同之处15,杰卡德指数为4.45% = 15 / (275 + 62)。

参考

本文介绍物理学和量子態之间的关系。要访问该信息提取每篇文章,请访问: