我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

牟合方盖和祖暅原理

快捷方式: 差异相似杰卡德相似系数参考

牟合方盖和祖暅原理之间的区别

牟合方盖 vs. 祖暅原理

牟合方盖是一种几何体,是两个等半径圆柱躺在平面上垂直相交的公共部分,因為像是兩個方形的蓋子合在一起,所以被稱作「牟合方蓋」。 阿基米德與祖沖之分別用不同方法計算出球体的體積是\frac \pi r^3,r為圓柱半徑。祖沖之使用的方法正是通过计算出牟合方蓋的体积为\frac r^3,从而推出了球体体积的计算公式。. 原理,又名等幂等积定理,是指所有等高处横截面积相等的两个同高立体,其体积也必然相等的定理。祖暅之《綴術》有--:「緣冪勢既同,則積不容異。」 该原理最早由中国古代数学家刘徽提出。南北朝时又被祖冲之的儿子祖暅提出。祖冲之兩父子采用这一原理,求出了牟合方盖的体积,进而算出球体积。在欧洲17世纪意大利数学家卡瓦列里亦發現相同定理,所以西方文献一般称该原理为卡瓦列里原理。 在現代的解析幾何和測度應用中,祖暅原理是富比尼定理中的一個特例。卡瓦列里沒有對這條的嚴謹證明,只發表在1635年的Geometria indivisibilibus以及1647年的Exercitationes Geometricae中,用以證明自己的Methode der Indivisibilien。以此方式可以計算某些立體的體積,甚至超越了阿基米德和克卜勒的成績。這個定理引發了以面積計算體積的方法並成為了積分發展的一個重要步驟。.

之间牟合方盖和祖暅原理相似

牟合方盖和祖暅原理有(在联盟百科)5共同点: 刘徽勾股定理球 (数学)祖冲之阿基米德

刘徽

刘徽(约225年-约295年),三国时代魏国数学家。白尚恕考证他是山东淄博淄川人,梁敬王刘定国之孙菑乡侯刘逢喜的后裔。 刘徽为《九章算术》做注,于三国魏景元四年(公元263年)成书,其中他提出用割圆术计算圆周率的方法,计算出正192边形的面积,得到圆周率的近似值为 \tfrac (即 3.14),在此基础上又计算出正3072边形的面积,得到圆周率的近似值为 \tfrac (即 3.1416)。作此書注時,他還依據其「割補術」為證勾股定理,另闢蹊徑作青朱出入圖。圖雖失傳,但據其「出入相補、以盈補虛」原理,後人參照書中類似方法還原了此圖。 刘徽後撰《重差》,唐初以後失传,仅《重差》一卷单行,因其第一题是测量海岛高度和距离的问题,故又名《海岛算经》。此外刘徽還著有《魯史欹器圖》,《九章重差圖》,唐代失傳。 刘徽的卓越成就受到后人的重视,宋徽宗时代为恢复数学教学制度,便追封了部分历代的天算家,其中便有刘徽。.

刘徽和牟合方盖 · 刘徽和祖暅原理 · 查看更多 »

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

勾股定理和牟合方盖 · 勾股定理和祖暅原理 · 查看更多 »

球 (数学)

在數學裡,球是指球面內部的空間。球可以是封閉的(包含球面的邊界點,稱為閉球),也可以是開放的(不包含邊界點,稱為開球)。 球的概念不只存在於三維歐氏空間裡,亦存在於較低或較高維度,以及一般度量空間裡。n\,\!維空間裡的球稱為n\,\!維球,且包含於n-1\,\!維球面內。因此,在歐氏平面裡,球為一圓盤,包含在圓內。在三維空間裡,球則是指在二維球面邊界內的空間。.

牟合方盖和球 (数学) · 球 (数学)和祖暅原理 · 查看更多 »

祖冲之

沖之(公元),字文远,范阳郡逎县(今河北省保定市涞水县)人,刘宋时代数学家、天文学家。祖冲之的主要成就在数学、天文历法和机械制造三个领域。祖冲之的儿子祖暅之也是数学家。.

牟合方盖和祖冲之 · 祖冲之和祖暅原理 · 查看更多 »

阿基米德

阿基米德(´Αρχιμήδης;),希腊化时代的数学家、物理学家、发明家、工程师、天文学家。出生于西西里岛的锡拉库扎,据说他在亞歷山卓求学时期,发明了阿基米德式螺旋抽水机,今天的埃及仍在使用。第二次布匿战争时,罗马大军围攻锡拉库扎,阿基米德死于罗马士兵之手。 阿基米德对数学和物理学的影响极为深远,被视为古希臘最杰出的科学家。他與牛頓和高斯被西方世界評價為有史以來最偉大的三位數學家。.

牟合方盖和阿基米德 · 祖暅原理和阿基米德 · 查看更多 »

上面的列表回答下列问题

牟合方盖和祖暅原理之间的比较

牟合方盖有15个关系,而祖暅原理有20个。由于它们的共同之处5,杰卡德指数为14.29% = 5 / (15 + 20)。

参考

本文介绍牟合方盖和祖暅原理之间的关系。要访问该信息提取每篇文章,请访问: