我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

熵和遙遠未來的時間線

快捷方式: 差异相似杰卡德相似系数参考

熵和遙遠未來的時間線之间的区别

熵 vs. 遙遠未來的時間線

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。. 雖然未來的預測永遠不可能完全準確,但如果僅限於廣泛的輪廓,則可以由現今各種知識領域的理解,預測遙遠未來的事件。這些領域包含了揭示行星與恆星形成、相互作用與死亡的天體物理學;揭示物質在最小尺度之性質的粒子物理學;預測生命如何隨時間演化的演化生物學;以及顯示千年以來地球大陸變化的板塊構造論。 所有地球、太陽系和宇宙未來的投射,都必須考慮熱力學第二定律,也就是熵(做功時所損失的能量)會隨時間的推移而增加。恆星最終會耗盡氫氣的供應並燃燒殆盡。行星與恆星之間的緊密接觸,將會使行星受到引力的影響而拋離恆星系統之外;而恆星與銀河系之間的緊密接觸,也會使恆星拋離星系之外。 最終,物質自身預計會受到放射性衰變的影響,即使是最穩定的物質也會分解成次原子粒子。目前的資料暗示著宇宙有一個扁平的幾何構造(或非常接近扁平構造),因此在有限的時間過後,不會出現自身塌陷的情形,而且在無限的未來可能會發生難以置信的大規模事件,如波茲曼大腦的形成。 本條目所列出的時間線,涵括了直到所能觸及的未來時間中,所發生的事件。其中本條目列出諸多可替換的未來事件,以用來說明尚未解決的問題,例如人類是否會滅絕,質子是否會衰變,或是當太陽膨脹成紅巨星時地球是否會存活下來等。.

之间熵和遙遠未來的時間線相似

熵和遙遠未來的時間線有(在联盟百科)4共同点: 科学家热力学第二定律黑洞

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

功和熵 · 功和遙遠未來的時間線 · 查看更多 »

科学家

科学家是一个泛称,广义上指使用系统化的活动来发现新知识的人。狭义的定义指使用科学方法做研究,并且在一定的领域取得重要影响或者贡献的科研工作者。 科学家一般是某个,或者多个科学领域里的专家。.

熵和科学家 · 科学家和遙遠未來的時間線 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

热力学第二定律和熵 · 热力学第二定律和遙遠未來的時間線 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

熵和黑洞 · 遙遠未來的時間線和黑洞 · 查看更多 »

上面的列表回答下列问题

熵和遙遠未來的時間線之间的比较

熵有47个关系,而遙遠未來的時間線有90个。由于它们的共同之处4,杰卡德指数为2.92% = 4 / (47 + 90)。

参考

本文介绍熵和遙遠未來的時間線之间的关系。要访问该信息提取每篇文章,请访问: