我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

点积和贗純量

快捷方式: 差异相似杰卡德相似系数参考

点积和贗純量之间的区别

点积 vs. 贗純量

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。. 贗純量(pseudoscalar)為類似純量的數量,但在空間反演、瑕旋轉時會多出負號,純量則不會。 贗向量與向量的內積會是贗純量。贗純量的一個典型例子為三重積。設空間中有三向量A、B、C,彼此線性獨立;A與B的叉積\mathbf\times \mathbf為一贗向量,此叉積再與C做內積可得三重積(\mathbf\times \mathbf) \cdot \mathbf,即A、B與C所構成的平行六面體體積。贗純量與向量的乘積會產生贗向量;贗純量與張量的乘積會產生贗張量。.

之间点积和贗純量相似

点积和贗純量有1共同点(的联盟百科): 向量

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

向量和点积 · 向量和贗純量 · 查看更多 »

上面的列表回答下列问题

点积和贗純量之间的比较

点积有46个关系,而贗純量有9个。由于它们的共同之处1,杰卡德指数为1.82% = 1 / (46 + 9)。

参考

本文介绍点积和贗純量之间的关系。要访问该信息提取每篇文章,请访问: