我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

点积和积

快捷方式: 差异相似杰卡德相似系数参考

点积和积之间的区别

点积 vs. 积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。. 积是数学中多个不同概念的称呼。算术中,两个数或多个数相乘得到的结果称为它们的积或乘积。当相乘的数是实数或复数的时候,相乘的顺序对积没有影响,这称为交换性。当相乘的是四元数或者矩阵,或者某些代数结构里的元素的时候,顺序会对作为结果的乘积造成影响。这说明这些对象的乘法没有交换性。 当相乘的对象多于两个的时候,常常使用连乘号∏(大写的)表示。就如同多个对象的加法使用∑作为符号一样。一般约定,相乘的对象只有一个的时候,乘积是对象本身;没有相乘的对象时也可以约定所谓的“空积”为1。.

之间点积和积相似

点积和积有(在联盟百科)6共同点: 叉积向量向量空间外代数交換律数学

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

叉积和点积 · 叉积和积 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

向量和点积 · 向量和积 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

向量空间和点积 · 向量空间和积 · 查看更多 »

外代数

外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.

外代数和点积 · 外代数和积 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

交換律和点积 · 交換律和积 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

数学和点积 · 数学和积 · 查看更多 »

上面的列表回答下列问题

点积和积之间的比较

点积有46个关系,而积有27个。由于它们的共同之处6,杰卡德指数为8.22% = 6 / (46 + 27)。

参考

本文介绍点积和积之间的关系。要访问该信息提取每篇文章,请访问: