之间流形和黎曼曲面相似
流形和黎曼曲面有(在联盟百科)15共同点: 同胚,复流形,开集,全纯函数,克莱因瓶,图册 (拓扑学),球,莫比乌斯带,豪斯多夫空间,黎曼流形,雅可比矩阵,波恩哈德·黎曼,拓扑,曲率,曲面。
同胚
在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.
复流形
微分几何中,一个复流形是一个流形,使得每个鄰域在一种连续的方式下看起来象一个複n维空间。更精确的讲,一个复流形有一个坐标图册,其每个坐标图映射到Cn,并且坐标图之间的坐标变换是全纯的。 复流形可以视为微分流形的一种特例。例如,一个1维复流形几何上就是一个曲面,称为黎曼曲面。变换函数必须全纯这个要求意味着和通常的微分流形不同,不同的''C''''k''-微分结构对于不同k没有区别,因为全纯函数解析,一次每个全纯结构也是一个Ck结构,对于任意k ≥1成立。 复流形的理论和实流形的有相当不同的感受,因为複解析函数比光滑函数更为严格。例如,使用惠特尼嵌入定理,每个实流形可以嵌入为Rn的子流形,,但是很少有复流形可以成为Cn的子流形。 Category:复流形 Category:流形上的结构.
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).
全纯函数
全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.
克莱因瓶
在数学领域中,克莱因瓶(Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。 要想像克萊因瓶的結構,可先試想一個底部鏤空的紅酒瓶。現在延長其頸部,向外扭曲後伸進瓶子的內部,再與底部的洞相連接。 和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。 其名稱可能源自德語中的「Kleinsche Fläche」(克萊因平面),後來被誤解為「Kleinsche Flasche」(克萊因瓶)。德語最終也沿用了「克萊因瓶」這種稱呼。.
图册 (拓扑学)
在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.
球
球可以指:.
莫比乌斯带
莫比乌斯带(Möbiusband)又譯梅比斯環、莫比乌斯环或麦比乌斯带,是一种只有一个面(表面)和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家莫比乌斯和约翰·李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦類似。 莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是梅比斯環),再把剛剛做出那個把纸带的端头扭转了两次再结合的环從中間剪開,則變成兩個環。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一個三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。 莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的發明比莫比乌斯帶還更要早。.
流形和莫比乌斯带 · 莫比乌斯带和黎曼曲面 ·
豪斯多夫空间
在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.
流形和豪斯多夫空间 · 豪斯多夫空间和黎曼曲面 ·
黎曼流形
黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.
雅可比矩阵
在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.
流形和雅可比矩阵 · 雅可比矩阵和黎曼曲面 ·
波恩哈德·黎曼
格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.
拓扑
拓扑有以下領域的意義與應用:.
曲率
曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.
曲面
在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.
上面的列表回答下列问题
- 什么流形和黎曼曲面的共同点。
- 什么是流形和黎曼曲面之间的相似性
流形和黎曼曲面之间的比较
流形有84个关系,而黎曼曲面有43个。由于它们的共同之处15,杰卡德指数为11.81% = 15 / (84 + 43)。
参考
本文介绍流形和黎曼曲面之间的关系。要访问该信息提取每篇文章,请访问: