徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

流体力学和空气动力学

快捷方式: 差异相似杰卡德相似系数参考

流体力学和空气动力学之间的区别

流体力学 vs. 空气动力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec. 氣動力學 (Aerodynamics),是流體力學的一個分支,主要研究物體在空氣或其它氣體中運動時所產生的各種力。.

之间流体力学和空气动力学相似

流体力学和空气动力学有(在联盟百科)10共同点: 动量守恒定律工程力学伯努利定律纳维-斯托克斯方程热力学第一定律计算流体力学航空工程邊界層雷诺数

动量守恒定律

动量守恒定律(Conservation of momentum):如果物体系受到的合外力为零,则系统内各物体动量的矢量合保持不变,系統質心維持原本的運動狀態。.

动量守恒定律和流体力学 · 动量守恒定律和空气动力学 · 查看更多 »

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

力和流体力学 · 力和空气动力学 · 查看更多 »

工程力学

工程力學,也稱應用力學,是研究宏觀物質運動規律及其在工程上的應用的科學,其基本原理是古典力學或經典力學,是物理學力學的一個分支,及質點及材料力學、塑性力學、彈性力學、黏彈性力學、結構力學、固體力學、流體力學、流變學、空氣力學、水力學和土力學等。工程力學屬於工程學的一門分科,旨在為如在材料科學、機械製造等專業提供理論上的計算方法。這些結合實際的法則可以進行材料的實際測量和選擇等諸多相關任務,工程力學作為輔助科學被運用其中。.

工程力学和流体力学 · 工程力学和空气动力学 · 查看更多 »

伯努利定律

伯努利原理(Bernoulli's principle),又稱柏努利定律、白努利定律(Bernoulli's Law),是流體力學中的一個定律,由瑞士流體物理學家丹尼尔·伯努利於1738年出版他的理論《Hydrodynamica》,描述流體沿著一條穩定、非黏性、不可壓縮的流線移動行為。 在流體動力學,伯努利原理指出,無黏性的流體的速度增加時,流體的壓力能或位能(勢能)總和將減少。 伯努利原理可以應用到不同類型的流體流動,從而是可廣泛套用的伯努利方程表示式。事實上,有不同類型的流的伯努利方程的不同形式的。伯努利原理的簡單形式是有效的不可壓縮流動(如最液體流動),也為移動可壓縮流體(如氣體)在低馬赫數(通常小於0.3)。更先進的形式可被應用到在某些情況 ​​下,在更高的馬赫數(見伯努利方程的推導)可壓縮流。 伯努利定律可以從能量守恆定律來推演。說明如下:在一個穩定的水流,沿著直線流向的所有點上,各種形式的流體機械能總和必定相同。也就是說,動能,位能,與內能的總和保持不變。換言之,任何的流體速度增加,即代表動態壓力和單位體積動能的增加,而在同時會導致其靜態壓力,單位體積流體的位能、內能等三者總和的減少。如果液體流出水庫,在各方向的流線上,各種形式的能量的總和是相同的;因為每單位體積能量的總和(即壓力和單位體積流體的重力位能 \rho g h的總和)在水庫內的任何位置都相同。 伯努利原理,也可以直接由牛頓第二定律推演。說明如下:如果從高壓區域往低壓區域,有一小體積流體沿水平方向流動,小體積區域後方的壓力自然比前方區域的壓力更大。所以,此區域的力量總和必然是沿著流線方向向前。在此假設,前後方區域面積相等,如此便提供了一個正方向淨力施於原先設定的流體小體積區域,其加速度與力量同方向。此假想環境中,流體粒子僅受到壓力和自己質量的重力之影響。先假設如果流體沿著流線方向作水平流動,並與流體流線的截面積垂直,因為流體從高壓區域朝低壓區域移動,流體速度因此增加;如果該小體積區域的流速降低,其唯一的可能性必定是因為它從低壓區朝高壓區移動。因此,任一水平流動流體之內,壓力最低處有最高流速,壓力最高處有最低流速。.

伯努利定律和流体力学 · 伯努利定律和空气动力学 · 查看更多 »

纳维-斯托克斯方程

纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。 因为纳维尔-斯托克斯方程可用于描述大量对学术研究和经济生活中重要现象的物理过程,它们是有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。 纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和壓力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。 这表示对于给定的物理问题,比如用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。 对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。 虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。.

流体力学和纳维-斯托克斯方程 · 空气动力学和纳维-斯托克斯方程 · 查看更多 »

热力学第一定律

熱力學第一定律(First Law of Thermodynamics)是熱力學的四條基本定律之一,能量守恒定律對非孤立系統的擴展。此時能量可以以功W或熱量Q的形式傳入或傳出系統。即: 式中\Delta E_为系统内能的变化量,若外界对该系统做功,则W为正值,反之为负值。 写成微分形式为:.

流体力学和热力学第一定律 · 热力学第一定律和空气动力学 · 查看更多 »

计算流体力学

计算流体力学(Computational Fluid Dynamics,簡稱CFD)是21世纪流体力学领域的重要技術之一,使用数值方法在计算机中对流体力学的控制方程进行求解,从而可预测流场的流动。目前有多种商业CFD软件问世,比如FLUENT、CFD-ACE+(CFDRC)、Phoenics、CFX、Star-cd等。 目前在工程领域CFD方法已经得到广泛的应用。美国海空军下一代F-35战斗机所使用的附面层分离进气道是CFD的成果之一。附面层分离进气道通过特殊设计形状的突起分离流速较慢的附面层以改善涡轮风扇发动机的进气流场。此设计比传统的附面层隔板方法可以减轻数百公斤重量,同时在一定速度范围内能够维持很好的分离效率。 CFD最基本的考虑是如何把连续流体在计算机上用离散的方式处理。一个方法是把空间区域离散化成小胞腔,以形成一个立体网格或者格点,然后应用合适的算法来解运动方程(对于不粘滞流体用欧拉方程,对于粘滞流体用纳维-斯托克斯方程)。另外,这样的一个网格可以是不规则的(例如在二维由三角形组成,在三维由四面体组成)或者是规则的;前者的特征是每个胞腔必须单独存储在内存中。最后,如果问题是高度动态的并且在尺度上跨越很大的范围,网格本身应该可以动态随时间调整,譬如在自适应网格细化方法中。 如果选择不使用基于网格的方法,也有一些可选的替代,比较突出的有:.

流体力学和计算流体力学 · 空气动力学和计算流体力学 · 查看更多 »

航空工程

航空工程(Aeronautical Engineering),包括飞行器的生产、制造、使用、管理与维修等,是一个复杂的系统。.

流体力学和航空工程 · 空气动力学和航空工程 · 查看更多 »

邊界層

邊界層,又称附面层是一個流體力學名詞,表示流體中緊接著管壁或其他固定表面的部份。邊界層是由黏滯力產生的效應,和雷諾數Re有關。 一般提到的邊界層是指速度的邊界層。在邊界層外,流體的速度接近定值,不隨位置而變化。在邊界層內,在固定表面上流速為0,距固定表面越遠,速度會趨近一定值。.

流体力学和邊界層 · 空气动力学和邊界層 · 查看更多 »

雷诺数

流体力学中,雷诺数(Reynolds number)是流体惯性力\frac与黏性力\frac比值的量度,它是一个無量纲量。 雷諾數較小時,黏滯力對流場的影響大於慣性力,流場中流速的擾動會因黏滯力而衰減,流體流動穩定,為層流;反之,若雷諾數較大時,慣性力對流場的影響大於黏滯力,流體流動較不穩定,流速的微小變化容易發展、增強,形成紊亂、不規則的紊流流場。.

流体力学和雷诺数 · 空气动力学和雷诺数 · 查看更多 »

上面的列表回答下列问题

流体力学和空气动力学之间的比较

流体力学有77个关系,而空气动力学有27个。由于它们的共同之处10,杰卡德指数为9.62% = 10 / (77 + 27)。

参考

本文介绍流体力学和空气动力学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »