我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

泰勒-库埃特流和泰勒数

快捷方式: 差异相似杰卡德相似系数参考

泰勒-库埃特流和泰勒数之间的区别

泰勒-库埃特流 vs. 泰勒数

在流体力学中,泰勒-库埃特流由夹在两个旋转圆柱之间缝隙中的粘性流体组成。当角速度较低时,通过测量雷诺数Re,可知这种流动具有稳定性和方位性。这种基本状态被称作环状库埃特流,是因为莫里斯·玛丽·艾尔弗雷德·库埃特曾用这套实验装置测量粘度。杰弗里·英格拉姆·泰勒爵士在一篇破天荒的论文中研究了库埃特流的稳定性,并成为了水力稳定理论发展的奠基石。 泰勒发现,当内筒角速度增大并超过某一临界值时,库埃特流失稳并进入第二稳态——其特点是出现轴对称的环形涡,叫做泰勒涡流。接着增加筒的角速度,系统会经历一个不稳定过程,进入更加混乱的状态,它的下一个状态过程叫做波状涡流。如果两个筒以相反方向旋转,那么螺旋涡流会出现。当雷诺数超过一定数值时就会出现紊流。 环状库埃特流应用广泛,包括从脱盐到磁流体动力学以及粘度分析。再进一步,如果两个旋转圆筒的环状空隙间流动的液体有压力梯度存在,那么就形成了泰勒-迪安流。 长期以来,人们对不同的流动环境分门别类,包括扭曲泰勒涡,波状出流边界,等等。这种流体在流体力学中受到了详尽的研究和记录。. 泰勒数(Taylor number,Ta)是流體力學中的無量綱描述流體因繞固定軸旋轉產生的離心力,相對其黏滯力的比例。 傑弗里·英格拉姆·泰勒在1923年時在其有關流體穩定性的文章時,引入此物理量。 泰勒数是出現在兩個相對旋轉的平行圓柱或是同心圓柱之間的拖曳流动,在此情形下,系統的角速度並不均勻,例如外圓柱是靜止的,內圓柱在旋轉,慣性力會使此系統不穩定,而黏滯力會穩定此系統,將外擾及紊流減小。 另一方面,在其他情形下此旋轉效應會被穩定,例如Rayleigh商(Rayleigh discriminant)為正的圓柱形拖曳流动,此情形下沒有軸對稱的不穩定性。另一個例子是一個以均勻速度旋轉的水桶(即承受剛體旋轉),此時流體行為可以用描述,小的運動會產生整個旋轉流場的純二維擾動。不過此時旋轉及黏滯力的效果會用埃克曼数及羅斯貝數來描述,不會使用泰勒数。 泰勒數有許多種定義,各定義不一定完全等效,最常用的是 \mathrm.

之间泰勒-库埃特流和泰勒数相似

泰勒-库埃特流和泰勒数有1共同点(的联盟百科): 黏度

黏度

黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.

泰勒-库埃特流和黏度 · 泰勒数和黏度 · 查看更多 »

上面的列表回答下列问题

泰勒-库埃特流和泰勒数之间的比较

泰勒-库埃特流有9个关系,而泰勒数有7个。由于它们的共同之处1,杰卡德指数为6.25% = 1 / (9 + 7)。

参考

本文介绍泰勒-库埃特流和泰勒数之间的关系。要访问该信息提取每篇文章,请访问: