我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

波粒二象性和雙縫實驗

快捷方式: 差异相似杰卡德相似系数参考

波粒二象性和雙縫實驗之间的区别

波粒二象性 vs. 雙縫實驗

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。. 在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

之间波粒二象性和雙縫實驗相似

波粒二象性和雙縫實驗有(在联盟百科)21共同点: 原子奧古斯丁·菲涅耳富勒烯尼尔斯·玻尔中子干涉 (物理学)分子哥本哈根詮釋光子光电效应电子輻照度阿尔伯特·爱因斯坦阿弗沙爾實驗量子力学波函数波前波长惠更斯-菲涅耳原理态叠加原理

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

原子和波粒二象性 · 原子和雙縫實驗 · 查看更多 »

奧古斯丁·菲涅耳

#重定向 奥古斯丁·菲涅耳.

奧古斯丁·菲涅耳和波粒二象性 · 奧古斯丁·菲涅耳和雙縫實驗 · 查看更多 »

富勒烯

富勒烯(Fullerene)是一種完全由碳组成的中空分子,形狀呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在萊斯大學制备出了第一种富勒烯,即「C60分子」或「富勒烯」,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为「巴克明斯特·富勒烯」(巴克球)。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。 “也许外太空的富勒烯为地球提供了生命的种子”。 在富勒烯发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。富勒烯和碳纳米管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。 Biosphère Montréal.jpg|建筑学家理查德·巴克明斯特·富勒设计的加拿大1967年世界博覽會球形圆顶薄壳建筑 Buckminsterfullerene-perspective-3D-balls.png|拥有60个碳原子的巴克明斯特·富勒烯C60 Football (soccer ball).svg|现代足球与C60有着非常类似结构.

富勒烯和波粒二象性 · 富勒烯和雙縫實驗 · 查看更多 »

尼尔斯·玻尔

尼尔斯·亨里克·达维德·玻尔(Niels Henrik David Bohr,),丹麦物理学家,1922年因“他對原子結構以及從原子發射出的輻射的研究”而榮获诺贝尔物理学奖。 玻尔發展出原子的玻尔模型。这一模型利用量子化的概念來合理地解释了氢原子的光谱。他还提出量子力学中的互补原理。20世纪20年代至30年代间量子力学及相关课题研究者的活动中心,哥本哈根大学的理论物理研究所(现名尼尔斯·玻尔研究所),也是由玻尔在1921年创办的。 20世纪30年代,玻尔积极帮助来自纳粹德国的流亡者。在纳粹德国占领丹麥后,玻尔与主持德国核武器开发计划的海森堡进行了一次著名会談。他在得知可能被德国人逮捕后,经由瑞典流亡至英国,並於該國参与了合金管工程。這是英国在曼哈顿计划中承擔的任務。战后,他呼吁各国就和平利用核能进行合作。他参与了欧洲核子研究组织及的创建,并于1957年成为的首任主席。为纪念玻尔,国际纯粹与应用化学联合会决定以他的名字命名107号元素,𨨏。.

尼尔斯·玻尔和波粒二象性 · 尼尔斯·玻尔和雙縫實驗 · 查看更多 »

中子

| magnetic_moment.

中子和波粒二象性 · 中子和雙縫實驗 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

干涉 (物理学)和波粒二象性 · 干涉 (物理学)和雙縫實驗 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

分子和波粒二象性 · 分子和雙縫實驗 · 查看更多 »

哥本哈根詮釋

哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.

哥本哈根詮釋和波粒二象性 · 哥本哈根詮釋和雙縫實驗 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

光和波粒二象性 · 光和雙縫實驗 · 查看更多 »

光子

| mean_lifetime.

光子和波粒二象性 · 光子和雙縫實驗 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

光电效应和波粒二象性 · 光电效应和雙縫實驗 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

波粒二象性和电子 · 电子和雙縫實驗 · 查看更多 »

輻照度

在光學裏,輻照度(irradiance)是電磁輻射入射於曲面時每單位面積的功率。輻射出射度(radiant emittance,radiant exitance)是從曲面輻射出的功率每單位面積。採用國際單位制,這些物理量的單位為瓦特每平方米(W/m2),採用CGS單位制,這些物理量的單位為爾格每平方厘米每秒(erg·cm−2·s−1,常用於天文學)。 物理学中,代表单位面积功率的物理量常被稱為強度,但這用法會與輻射強度(单位立体角内的辐射通量)引起混淆。特别在光学和激光物理学中,辐照度也被叫做光强。 輻照度表示各種頻率輻射的總量。物理學者時常也會分開檢驗輻射頻譜的每一單獨頻率。假設對於入射於曲面的輻射做這動作,則稱這輻射為光譜輻照度(spectral irradiance),國際單位制的單位為W/m2。 假設一個點光源均勻地朝著所有方向傳播光波,則輻照度按照平方反比定律遞減。.

波粒二象性和輻照度 · 輻照度和雙縫實驗 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

波粒二象性和阿尔伯特·爱因斯坦 · 阿尔伯特·爱因斯坦和雙縫實驗 · 查看更多 »

阿弗沙爾實驗

阿弗沙爾實驗(Afshar experiment)是一項光學實驗,可能可以挑戰量子力學中的互補原理(principle of complementarity),雖然當前仍未有物理學方面的共識。此實驗是首先由伊朗科學家沙赫里亞爾·阿弗沙爾(Shahriar Afshar)於2001年設計與執行,其結果看起來與量子力學的標準預測相一致;不過據稱其違背了(Englert-Greenberger)恩格勒特格林伯格二元性關係。 Category:光學 Category:量子測量 Category:物理學實驗.

波粒二象性和阿弗沙爾實驗 · 阿弗沙爾實驗和雙縫實驗 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

波粒二象性和量子力学 · 量子力学和雙縫實驗 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

波函数和波粒二象性 · 波函数和雙縫實驗 · 查看更多 »

波前

#重定向 波阵面.

波前和波粒二象性 · 波前和雙縫實驗 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

波粒二象性和波长 · 波长和雙縫實驗 · 查看更多 »

惠更斯-菲涅耳原理

惠更斯-菲涅耳原理(Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷蘭物理學者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。這个原理同时适用于远场极限和近场衍射。 惠更斯-菲涅耳原理能夠正確地解釋與計算波的傳播。基爾霍夫衍射公式給衍射提供了一個嚴格的數學基礎,這基礎是建立於波動方程式和格林第二恒等式。從基爾霍夫衍射公式,可以推導出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理裏憑空提出的假定,在這推導過程中,會自然地表現出來。 舉一個簡單例子來解釋這原理。假设有两个相邻房间A、B,这两个房间之間有一扇敞开的房门。当声音从房间A的角落裏发出时,则处於房间B的人所听到的这声音有如是位於门口的波源传播而来的。對於房间B的人而言,位於门口的空气振动是声音的波源。 光波对於狹縫或孔徑的衍射也可以用這方式處理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。.

惠更斯-菲涅耳原理和波粒二象性 · 惠更斯-菲涅耳原理和雙縫實驗 · 查看更多 »

态叠加原理

在量子力学裏,态叠加原理(superposition principle)表明,假若一個量子系統的量子態可以是幾種不同量子態中的任意一種,則它們的歸一化線性組合也可以是其量子態。稱這線性組合為「疊加態」。假設組成疊加態的幾種量子態相互正交,則這量子系統處於其中任意量子態的機率是對應權值的絕對值平方。 從數學表述,态叠加原理是薛丁格方程式的解所具有的性質。由於薛丁格方程式是個線性方程式,任意幾個解的線性組合也是解。這些形成線性組合(稱為「疊加態」)的解時常會被設定為相互正交(稱為「基底態」),例如氫原子的電子能級態;換句話說,這幾個基底態彼此之間不會出現重疊。這樣,對於疊加態測量任意可觀察量所得到的期望值,是對於每一個基底態測量同樣可觀察量所得到的期望值,乘以疊加態處於對應基底態的機率之後,所有乘積的總和。 更具體地說明,假設對於某量子系統測量可觀察量A,而可觀察量A的本徵態|a_1\rang、|a_2\rang分別擁有本徵值a_1、a_2,則根据薛定谔方程的线性关系,疊加態|\psi\rang.

态叠加原理和波粒二象性 · 态叠加原理和雙縫實驗 · 查看更多 »

上面的列表回答下列问题

波粒二象性和雙縫實驗之间的比较

波粒二象性有94个关系,而雙縫實驗有46个。由于它们的共同之处21,杰卡德指数为15.00% = 21 / (94 + 46)。

参考

本文介绍波粒二象性和雙縫實驗之间的关系。要访问该信息提取每篇文章,请访问: