我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

波和薛定谔方程

快捷方式: 差异相似杰卡德相似系数参考

波和薛定谔方程之间的区别

波 vs. 薛定谔方程

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。. 在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

之间波和薛定谔方程相似

波和薛定谔方程有(在联盟百科)11共同点: 干涉光子物質波相速度駐波角频率電磁波波包波粒二象性波數时间

干涉

干涉可以指:.

干涉和波 · 干涉和薛定谔方程 · 查看更多 »

光子

| mean_lifetime.

光子和波 · 光子和薛定谔方程 · 查看更多 »

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

波和物質波 · 物質波和薛定谔方程 · 查看更多 »

相速度

波的相速度或相位速度(phase velocity),或簡稱相速,是指波的相位在空間中傳遞的速度,換句話說,波的任一頻率成分所具有的相位即以此速度傳遞。可以挑選波的任一特定相位來觀察(例如波峰),則此處會以相速度前行。相速度可藉由波的頻率f與波長λ,或者是角頻率ω與波數(wave number)k的關係式表示: 注意到波的相速度不必然與波的群速度相同,相速是波包中某一单频波的相位移动速度;群速度代表的是「振幅變化」(或說波包)的傳遞速度,表示一段波包的包络面上具有某特性(如幅值最大或最小)的点的传播速度。 群速和相速只有是混合波(非单频波)在频散介质中传播时才有差别。 電磁輻射的相速度可能在一些特定情況下(例如:出現異常色散的情形)超過真空中光速,但這不表示任何超光速的--或者是能量移轉。物理學家阿諾·索末菲與里昂·布里於因(Léon Brillouin)對此皆有理論性描述。 參閱色散以對波的各種速度有更完整的了解。.

波和相速度 · 相速度和薛定谔方程 · 查看更多 »

駐波

波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.

波和駐波 · 薛定谔方程和駐波 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

波和角频率 · 薛定谔方程和角频率 · 查看更多 »

電磁波

#重定向 电磁辐射.

波和電磁波 · 薛定谔方程和電磁波 · 查看更多 »

波包

在任意時刻,波包(wave packet)是局限在空間的某有限範圍區域內的波動,在其它區域的部分非常微小,可以被忽略。波包整體隨著時間流易移動於空間。波包可以分解為一組不同頻率、波數、相位、波幅的正弦波,也可以從同樣一組正弦波構成;在任意時刻,這些正弦波只會在空間的某有限範圍區域相長干涉,在其它區域會相消干涉。 描繪波包輪廓的曲線稱為包絡線。依據不同的演化方程,在傳播的時候,波包的包絡線(描繪波包輪廓的曲線)可能會保持不變(沒有色散),或者包絡線會改變(有色散)。 在量子力學裏,波包可以用來代表粒子,表示粒子的機率波;也就是說,表現於位置空間,波包在某時間、位置的波幅平方,就是找到粒子在那時間、位置的機率密度;在任意區域內,波包所囊括面積的絕對值平方,就是找到粒子處於那區域的機率。粒子的波包越狹窄,則粒子位置的不確定性越小,而動量的不確定性越大;反之亦然。這位置的不確定性和動量的不確定性,兩者之間無可避免的關係,是不確定性原理的一個標準案例。 描述粒子的波包滿足薛定諤方程,是薛定諤方程的數學解。通過含時薛定諤方程,可以預測粒子隨著時間演化的量子行為。這與在經典力學裏的哈密頓表述很類似。.

波和波包 · 波包和薛定谔方程 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

波和波粒二象性 · 波粒二象性和薛定谔方程 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

波和波數 · 波數和薛定谔方程 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

时间和波 · 时间和薛定谔方程 · 查看更多 »

上面的列表回答下列问题

波和薛定谔方程之间的比较

波有47个关系,而薛定谔方程有141个。由于它们的共同之处11,杰卡德指数为5.85% = 11 / (47 + 141)。

参考

本文介绍波和薛定谔方程之间的关系。要访问该信息提取每篇文章,请访问: