我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

泡利不相容原理和自旋統計定理

快捷方式: 差异相似杰卡德相似系数参考

泡利不相容原理和自旋統計定理之间的区别

泡利不相容原理 vs. 自旋統計定理

在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。. 在量子力學裡,自旋統計定理給出粒子自旋量子數與粒子統計行為的關係。自旋是内禀的角動量,每個粒子有整數或是半整數的自旋量子數,與粒子外在的運動無關。 定理的內容如下:.

之间泡利不相容原理和自旋統計定理相似

泡利不相容原理和自旋統計定理有(在联盟百科)4共同点: 玻色子费米子自旋波函数

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

泡利不相容原理和玻色子 · 玻色子和自旋統計定理 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

泡利不相容原理和费米子 · 自旋統計定理和费米子 · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

泡利不相容原理和自旋 · 自旋和自旋統計定理 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

泡利不相容原理和波函数 · 波函数和自旋統計定理 · 查看更多 »

上面的列表回答下列问题

泡利不相容原理和自旋統計定理之间的比较

泡利不相容原理有108个关系,而自旋統計定理有6个。由于它们的共同之处4,杰卡德指数为3.51% = 4 / (108 + 6)。

参考

本文介绍泡利不相容原理和自旋統計定理之间的关系。要访问该信息提取每篇文章,请访问: