徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

泛函分析和賦範向量空間

快捷方式: 差异相似杰卡德相似系数参考

泛函分析和賦範向量空間之间的区别

泛函分析 vs. 賦範向量空間

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。. 在数学中,赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里得空间 Rn 的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:.

之间泛函分析和賦範向量空間相似

泛函分析和賦範向量空間有(在联盟百科)13共同点: 向量空间实数完备性对偶空间巴拿赫空间哈恩-巴拿赫定理函数勒贝格测度线性映射绝对值连续函数范数Lp空间

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

向量空间和泛函分析 · 向量空间和賦範向量空間 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和泛函分析 · 实数和賦範向量空間 · 查看更多 »

完备性

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。.

完备性和泛函分析 · 完备性和賦範向量空間 · 查看更多 »

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

对偶空间和泛函分析 · 对偶空间和賦範向量空間 · 查看更多 »

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

巴拿赫空间和泛函分析 · 巴拿赫空间和賦範向量空間 · 查看更多 »

哈恩-巴拿赫定理

在泛函分析中,哈恩-巴拿赫定理是一个极为重要的工具。它允许了定义在某个向量空间上的有界线性算子扩张到整个空间,并说明了存在“足够”的连续线性泛函,定义在每一个賦範向量空間,使对偶空间的研究变得有趣味。这个定理以汉斯·哈恩和斯特凡·巴拿赫命名,他们在1920年独立证明了这个定理。.

哈恩-巴拿赫定理和泛函分析 · 哈恩-巴拿赫定理和賦範向量空間 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

函数和泛函分析 · 函数和賦範向量空間 · 查看更多 »

勒贝格测度

数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予一个体积的集合被称为勒贝格可测;勒贝格可测集A的体积或者说测度记作λ(A)。一个值为∞的勒贝格测度是可能的,但是即使如此,在假设选择公理成立时,Rn的所有子集也不都是勒贝格可测的。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。.

勒贝格测度和泛函分析 · 勒贝格测度和賦範向量空間 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

泛函分析和线性映射 · 线性映射和賦範向量空間 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

泛函分析和绝对值 · 绝对值和賦範向量空間 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

泛函分析和连续函数 · 賦範向量空間和连续函数 · 查看更多 »

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

泛函分析和范数 · 范数和賦範向量空間 · 查看更多 »

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

Lp空间和泛函分析 · Lp空间和賦範向量空間 · 查看更多 »

上面的列表回答下列问题

泛函分析和賦範向量空間之间的比较

泛函分析有61个关系,而賦範向量空間有36个。由于它们的共同之处13,杰卡德指数为13.40% = 13 / (61 + 36)。

参考

本文介绍泛函分析和賦範向量空間之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »