我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

沉降系数和線粒體

快捷方式: 差异相似杰卡德相似系数参考

沉降系数和線粒體之间的区别

沉降系数 vs. 線粒體

粒子的沉降系数 s 用来表征其在沉降,尤其是离心沉降过程中的行为 ;被定义为一个微粒的沉降速度与致其沉降的加速度的比率。 沉降速度v_t (ms^)也称为终端速度 。这是一个恒定值,因为它受到重力或离心力(超速离心机提供的数万倍 g 的加速度 )由介质(通常是水 )被作用于该粒子的运动的粘性阻力所抵消,故作匀速直线运动。所施加的加速度 (ms−2)可以是重力加速度 g, 更常见的是离心加速度 \omega^2 r 。在后一种情况下, \omega是转子的角速度 ,r 是粒子和转轴( 半径 )的距离。 粘性阻力由下式(斯托克斯定律)给出:6πηr0 v,其中η是介质的粘度,r0是颗粒的半径,v是粒子的速度。此规则仅适用于较大的球体。 离心力由以下公式给出:mr\omega^。这里,r是粒子和转轴(半径)的距离。。当二力(粘性力和离心力)平衡时,粒子以恒定速度运动,该速度称为终端速度。因此,终端速度由下式给出。 重新整理这个公式,我们得到了最终的公式: 沉降系数有一个特定的时间单位,这个单位是斯维德伯格(S)。一S被定义为精确地10 -13 秒 。本质上,由于离心力越大离子沉降越快,沉降系数是用离心施加的加速度大小平衡颗粒的沉降速率。这样所得到的值就不再依赖于加速度大小,而仅由颗粒的性质和它悬浮介质决定。在文献引用中,沉降系数通常是在水中的20℃时的值。 较大的颗粒沉降更快,具​​有较高的沉降系数(S值)。然而,沉降系数没有可加性。沉降率并不仅仅取决于粒子的质量或体积,当两个颗粒结合在一起难免造成表面积减少。因此,当单独计量,他们的和将与两者结合时的粒子S值不符。核糖体就是一个例子。核糖体是最经常通过它们的沉降系数进行分辨。例如,来自细菌的70S核糖体实际上是沉降系数为70S的,虽然它是由一个50S亚基和一个30S亚基。. --(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

之间沉降系数和線粒體相似

沉降系数和線粒體有(在联盟百科)4共同点: 细菌核糖体斯维德伯格

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

沉降系数和细菌 · 線粒體和细菌 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

核糖体和沉降系数 · 核糖体和線粒體 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

水和沉降系数 · 水和線粒體 · 查看更多 »

斯维德伯格

斯维德伯格(svedberg,符号为S,有时为Sv,不要将此Sv与表示国际单位制单位西弗以及非国际单位制单位斯维尔德鲁普的Sv相混淆)是一个用于表示沉降系数的非国际单位制物理单位。它表示在特别是离心过程的沉降过程中粒子类型的行为特征。斯维德伯格是一个度量时间的技术性单位 ,且准确定义为10-13秒(100飞秒)。 该单位根据瑞典化学家特奥多尔·斯韦德贝里(1884年-1971年)的名字而命名,他是1926年诺贝尔化学奖得主,因其在胶体化学上的研究并且他发明了。 较大的微粒倾向于沉降地更快并因此具有较高的斯维德伯格值。然而沉降系数S并不可以相加。沉降速率并不仅仅取决于一个微粒的质量或体积,并且当两个微粒结合在一起时就会不可避免地损失表面积。因此当分别测量时,它们的斯维德伯格值加起来并不会与结合状态粒子的相等。 斯维德伯格是用于区分核糖体的最重要的单位,核糖体在研究种系发生学时较为重要。.

斯维德伯格和沉降系数 · 斯维德伯格和線粒體 · 查看更多 »

上面的列表回答下列问题

沉降系数和線粒體之间的比较

沉降系数有17个关系,而線粒體有249个。由于它们的共同之处4,杰卡德指数为1.50% = 4 / (17 + 249)。

参考

本文介绍沉降系数和線粒體之间的关系。要访问该信息提取每篇文章,请访问: