我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

氮和百武二號彗星

快捷方式: 差异相似杰卡德相似系数参考

氮和百武二號彗星之间的区别

氮 vs. 百武二號彗星

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。. 武二號彗星(C/1996 B2)是一顆非週期性彗星,由日本鹿兒島業餘天文學家百武裕司於1996年1月30日在日本鹿兒島縣發現,是他发现的第二顆彗星。該彗星於1996年3月25日最接近地球(距離地球約135萬公里),該彗星由2月初的10等猛增至3月底的0等。藍綠色彗頭配以3月底時彗尾長達120度,細長的藍色彗尾橫跨北斗七星至半個天空,令不少親眼目睹的天文愛好者著迷,同年5月1日通過近日點。 3月25日,哈伯望遠鏡拍攝到百武彗星彗核物質分裂的樣子,同時地面天文愛好者亦拍攝到此現象。3月26日至28日,美國和德國的天文學家使用伦琴X射线天文卫星(ROSAT)發現彗星的X射線辐射,這是人類首次探測到彗星發射X射線,且其強度也是天文學家始料不及的。百武彗星的X射線是在彗星內部形成還是太陽風與彗星物質的猛烈撞擊還沒有定案。 另外,美國哈佛史密松天文物理中心的天文學家分析次毫米波段的觀測資料,在百武彗星上所觀測到的氫和氘(即重氫)比例計算,推斷地表水份來源,和地球形成過程中,某時期內有眾多彗星隕落地球的假設依據。欧洲南方天文台針對百武彗星上所含元素的分析,氨、烷類以及氫氧化物等有機物所佔的比率不少。 2000年尤利西斯号探测器的研究小組公佈,報道探測器在1996年5月1日穿越百武彗星離子尾的質譜分析;測量到大量C+、O+及不太多的C2+、O2+、N+、OH+、H2O+。 這顆彗星的公轉週期極長,對照上一次回歸的時間約為17000年前,由於受行星引力影響致其軌道改變,因此以後十萬年內回歸的機會很少。 百武裕司發現的第一顆彗星編號為C/1995 Y1(1995年12月25日在鹿兒島縣發現,當時光度10.5等),1996年2月24日過近日點,由於此彗星光度不亮(最亮也只有7.8等),普通小型望遠鏡也難以看到,因此不受天文愛好者注目,而第二顆明顯比第一顆亮得多而更為人熟悉,因此「百武彗星」通常是指第二顆。.

之间氮和百武二號彗星相似

氮和百武二號彗星有(在联盟百科)3共同点: 红外线

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

氮和红外线 · 百武二號彗星和红外线 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

氢和氮 · 氢和百武二號彗星 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

氨和氮 · 氨和百武二號彗星 · 查看更多 »

上面的列表回答下列问题

氮和百武二號彗星之间的比较

氮有131个关系,而百武二號彗星有21个。由于它们的共同之处3,杰卡德指数为1.97% = 3 / (131 + 21)。

参考

本文介绍氮和百武二號彗星之间的关系。要访问该信息提取每篇文章,请访问: