我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

氧和藍色

快捷方式: 差异相似杰卡德相似系数参考

氧和藍色之间的区别

氧 vs. 藍色

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。. 蓝色是一种颜色,它是红绿蓝光的三原色中的其中一元,在这三种原色中它的波长最短(约470-440纳米)。 由于空气中灰尘对日光的瑞利散射,晴天的天空是蓝色的。由于水分子中的氢-氧键对约750纳米的光的吸收,大量的水集中在一起呈蓝色,由于氘-氧键吸收波长比较长的光(约950纳米),因此重水是无色的。 蓝色的互补色是橘色。.

之间氧和藍色相似

氧和藍色有(在联盟百科)5共同点: 纳米瑞利散射静脉

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

氧和纳米 · 纳米和藍色 · 查看更多 »

瑞利散射

利散射(Rayleigh scattering),由英国物理学家約翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。 在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射適用於尺寸遠小於光波長的微小顆粒,和光學的“軟”顆粒(即,其折射率接近1)。当顆粒尺度相似或大於散射光的波長时,通常是由米氏散射理論、離散偶極子近似和其它計算技術来處理。 瑞利散射光的強度和入射光波长λ的四次方成反比: I(\lambda)_ \propto \frac 其中\scriptstyle I(\lambda)_是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的紅光更易產生瑞利散射。.

氧和瑞利散射 · 瑞利散射和藍色 · 查看更多 »

静脉

顯示靜脈閥,可防止靜脈逆流, 静脉是循环系统中使血液回流心脏的血管。大多数静脉(體循環的静脉)携带的血液氧量較低、二氧化碳含量較高,它们把血从体组织带回心脏,肺循環的静脉和脐静脉中的血液氧濃度是最高而二氧化碳是最低的。.

氧和静脉 · 藍色和静脉 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

氢和氧 · 氢和藍色 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

氧和水 · 水和藍色 · 查看更多 »

上面的列表回答下列问题

氧和藍色之间的比较

氧有308个关系,而藍色有86个。由于它们的共同之处5,杰卡德指数为1.27% = 5 / (308 + 86)。

参考

本文介绍氧和藍色之间的关系。要访问该信息提取每篇文章,请访问: