气体和瑞利散射
快捷方式: 差异,相似,杰卡德相似系数,参考。
气体和瑞利散射之间的区别
气体 vs. 瑞利散射
气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。. 利散射(Rayleigh scattering),由英国物理学家約翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。 在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射適用於尺寸遠小於光波長的微小顆粒,和光學的“軟”顆粒(即,其折射率接近1)。当顆粒尺度相似或大於散射光的波長时,通常是由米氏散射理論、離散偶極子近似和其它計算技術来處理。 瑞利散射光的強度和入射光波长λ的四次方成反比: I(\lambda)_ \propto \frac 其中\scriptstyle I(\lambda)_是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的紅光更易產生瑞利散射。.
之间气体和瑞利散射相似
气体和瑞利散射有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么气体和瑞利散射的共同点。
- 什么是气体和瑞利散射之间的相似性
气体和瑞利散射之间的比较
气体有111个关系,而瑞利散射有14个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (111 + 14)。
参考
本文介绍气体和瑞利散射之间的关系。要访问该信息提取每篇文章,请访问: